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Abstract

For nonmodel organisms, genome-wide information that describes functionally relevant variation may be obtained

by RNA-Seq following de novo transcriptome assembly. While sequencing has become relatively inexpensive, the

preparation of a large number of sequencing libraries remains prohibitively expensive for population genetic analy-

ses of nonmodel species. Pooling samples may be then an attractive alternative. To test whether pooled RNA-Seq

accurately predicts true allele frequencies, we analysed the liver transcriptomes of 10 bank voles. Each sample was

sequenced both as an individually barcoded library and as a part of a pool. Equal amounts of total RNA from each

vole were pooled prior to mRNA selection and library construction. Reads were mapped onto the de novo assembled

reference transcriptome. High-quality genotypes for individual voles, determined for 23 682 SNPs, provided infor-

mation on ‘true’ allele frequencies; allele frequencies estimated from the pool were then compared with these values.

‘True’ frequencies and those estimated from the pool were highly correlated. Mean relative estimation error was 21%

and did not depend on expression level. However, we also observed a minor effect of interindividual variation in

gene expression and allele-specific gene expression influencing allele frequency estimation accuracy. Moreover, we

observed strong negative relationship between minor allele frequency and relative estimation error. Our results indi-

cate that pooled RNA-Seq exhibits accuracy comparable with pooled genome resequencing, but variation in expres-

sion level between individuals should be assessed and accounted for. This should help in taking account the

difference in accuracy between conservatively expressed transcripts and these which are variable in expression level.
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Introduction

Next-generation sequencing (NGS) technologies have

resulted in enormous progress not only in the field of

medicine but also in the fields of ecology and evolution-

ary biology. Comparative studies of natural variation at

the molecular level have yielded important insights into

the evolutionary history of populations, as well as the

genomics of adaptation and speciation (Gilad et al. 2009;

Rice et al. 2011; Radwan & Babik 2012). For example,

NGS technologies have recently been instrumental in

enabling findings as impressive and varied as evidence

of interbreeding between modern humans and Neander-

thals (Reich et al. 2010), the discovery that adaptive evo-

lution results from standing genetic variation in the

stickleback (Jones et al. 2012) and the identification of

epistasis as one of the most important factors in

evolution (Breen et al. 2012). Nonmodel, ecologically

well-characterized organisms are being studied at a scale

and with a precision unimaginable a few years ago

(Ekblom & Galindo 2011). Unfortunately, high-quality

reference genomes are still lacking for many organisms

that are commonly used in evolutionary and ecological

studies, mainly because the de novo assembly of complex

genomes that include a large number of repetitive

sequences remains a challenging task (Brenchley et al.

2012). In such cases, genome-wide information that

describes functionally relevant variation may be

obtained through RNA sequencing (RNA-Seq) that uti-

lizes de novo reference transcriptome assembly. This

approach has been broadly used in ecological genomics

(Vera et al. 2008; Babik et al. 2010; Jeukens et al. 2010;

Wolf et al. 2010; Salem et al. 2012).

RNA-Seq is an approach in which RNA molecules are

selected, reverse-transcribed and then sequenced using

an NGS platform (Mortazavi et al. 2008). Genome com-

plexity and redundancy are reduced because only
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transcribed sequences are used, which enable the de novo

assembly of entire transcripts, even when a relatively

modest amount of sequence data are available (Martin &

Wang 2011). It is important to note that RNA-Seq does

not reduce genomic complexity randomly, but rather

produces reads from regions in which a large proportion

of functionally relevant variation is expected to be

located (Jones et al. 2012). Such variation may be

assessed and compared with known variation in genes

in other organisms without requiring any pre-existing

genomic information. Gene expression, alternative splic-

ing patterns and the association of both with phenotypic

traits may be also studied using RNA-Seq (Lu et al. 2010;

Barbosa-Morais et al. 2012).

RNA-Seq is usually less costly than genome rese-

quencing. However, if transcripts with low levels of

expression are to be assembled, greater sequencing

depth may be required, which increases the overall cost.

Furthermore, the cost of preparing a large number of

RNA-Seq libraries, for example from many individuals,

is still prohibitively high. An attractive possible solution

to this problem is sample pooling (i.e. a pooled RNA-

Seq). However, meaningful inferences from pooled RNA

data require that allele frequencies estimated from

pooled samples adequately reflect true allele frequen-

cies. In case of RNAseq, uncertainty about population

allele frequency arises not only because of sampling

finite number of individuals, but also from additional

stochasticity introduced due to differences in expression

level among genes or even among alleles of the

same gene. It may bias allele frequency estimates drasti-

cally, and to our knowledge, the extent to which these

RNAseq-specific issues bias allele frequency estimates

has not been explored.

Pooling strategies using DNA samples (Pool-Seq)

have been comprehensively tested (Sham et al. 2002;

Futschik & Schl€otterer 2010; Kim et al. 2010; Gompert &

Buerkle 2011; Li 2011; Zhu et al. 2012), and they share

some of the difficulties of the pooled RNA-Seq approach.

In both Pool-Seq and pooled RNA-Seq approaches, the

error associated with allele frequency estimates is inver-

sely proportional to ‘true’ allele frequency. Several com-

putational approaches that have been proposed to find

rare variants in DNA pools and estimate their frequen-

cies (Druley et al. 2009; Bansal 2010) could possibly be

applied in pooled RNA-Seq analyses as well. Further-

more, variability introduced by technical errors (inaccu-

rate pipetting, sequencing errors, etc.) is expected to be

similar for RNA and DNA samples. However, three

sources of error specific to pooled RNA-Seq have not

been previously studied: (i) variation in expression levels

among individuals, (ii) variation in expression levels

among loci and (iii) allele-specific gene expression

(Fig. 1).

Substantial differences in gene expression levels com-

monly occur among individuals of the same sex or devel-

opmental stage and are attributable to differences in

genetic background and environment. For example,

Whitehead and Crawford (2006) showed that 64% of

genes are differentially expressed among individuals of

the teleost fish genus Fundulus. Other studies argue that

gene expression varies extensively both within and

among populations (Sandberg et al. 2000; Morloy et al.

2004; Oleksiak et al. 2005; Lynch & Wagner 2008;
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Fig. 1 Transcriptome-specific sources of

error in allele frequency estimates

obtained from a pooled sample. Interindi-

vidual variation in gene expression (A),

interlocus variation in gene expression (B)

and allele-specific gene expression (C) are

compared with a locus for which the

allele frequency estimate is not biased

(D).
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Barbosa-Morais et al. 2012). In the pooled RNA-Seq

approach, interindividual variation in expression level

may bias estimates of allele frequency because different

individuals contribute unequal numbers of reads. If indi-

viduals differ greatly in their expression of a given gene,

allele frequency estimates will be biased towards indi-

viduals with higher expression levels.

Interlocus variation in expression levels produces

enormous differences in sequencing coverage, which

may cause differences in the accuracy of allele frequency

estimates for different loci. In non-normalized RNA-Seq

analyses, gene expression levels may differ by six orders

of magnitude (Mortazavi et al. 2008). The estimated allele

frequencies for genes expressed at low levels will be less

accurate than those obtained for genes covered by mil-

lions of reads. This problem is known to occur in tran-

scriptomic studies, but it has not been studied in the

context of pooling.

The third major issue is allele-specific gene expression

(Serre et al. 2008; Ge et al. 2009). Cis-acting regulation or

epigenetic silencing may cause differential expression of

a diploid individual’s two alleles. Although allele-spe-

cific gene expression is a widespread phenomenon that

affects the expression of 20% of genes, allele expression

ratios higher than 70:30 are rather rare (Serre et al. 2008).

As a result, heterozygotes can in the vast majority of

cases be successfully identified, given sufficient sequenc-

ing depth (Skelly et al. 2011). However, using pooling

techniques, we expect frequency estimates to be dis-

torted for over- and underexpressed alleles.

Although both potentially attractive and inexpensive,

the utility of pooled RNA-Seq may be limited by the

above issues, and thus, the accuracy of the allele fre-

quency estimates obtained from pooled data should be

characterized empirically. Building on results of Pool-

Seq studies, we explore here additional, RNA-Seq spe-

cific, aspects of allele frequency estimation. Our general

aim is to determine how various aspects of expression

level variation influence allele frequency estimation.

To examine the accuracy of allele frequency estimates

obtained with a pooled RNA-Seq approach, we used

bank vole (Myodes glareolus) liver transcriptomes. This

rodent species is an important organism in evolutionary,

ecological and behavioural studies (Sadowska et al. 2005;

Radwan et al. 2008; Boraty�nski & Koteja 2009; Mokkonen

et al. 2011; Tschirren et al. 2012). The bank vole genome

is not available, and a high-quality reference genome is

unlikely to become available in the near future. The bank

vole thus serves as a good example of a nonmodel organ-

ism for which obtaining genome-wide data is an impor-

tant but nontrivial task. RNA samples from the livers of

10 voles were sequenced to generate both individually

barcoded libraries and a pooled sample. Allele frequen-

cies were estimated from the pool and then compared

with the ‘true’ frequencies obtained from the individual

libraries.

Materials and methods

Sample collection

Liver samples were obtained from ten bank voles

(Myodes glareolus) from a single control line (unselected)

of an artificial selection experiment (generation 13),

designed to study correlated evolution of behavioural

and physiological traits (Sadowska et al. 2008). The labo-

ratory colony was created using voles captured in the

Niepołomice Forest near Krak�ow (Poland) in 2000.

Details related to colony protocols have been provided

elsewhere (Sadowska et al. 2008). The experimental pro-

tocols were approved by the I Local Ethical Committee

in Krak�ow (decision number 99/2006).

Five male and five female voles, each 75–80 days old,

were euthanized using an overdose of isoflurane (Aerra-

ne�). The animals were dissected immediately, and a

small part (ca. 0.01 g) of the left liver lobe was placed in

RNAlater�. The samples were stored overnight at 4 °C
and then frozen at �20 °C.

Total RNA was extracted using RNAzol� (Molecular

Research Center) in accordance with the manufacturer’s

instructions. Residual DNA was removed with a DNA-

free Kit (Ambion�). RNA concentration and quality were

measured using Nanodrop and Agilent 2100 Bioanalyzer,

respectively. All samples had an RNA integrity number

(RIN) > 7.0, which indicated quality sufficient for poly-A

selection and cDNA library preparation.

The pooled sample was prepared using an equal

amount of total RNA from each individual. RNA concen-

tration and quality in the pool were assessed as

described earlier.

In the final step, the eleven RNA samples (ten indi-

vidual and one pooled) were used in poly-A selection

and the preparation of barcoded cDNA libraries by

the Georgia Genomics Facility. Paired-end 2 9 100 bp

sequencing was performed in one lane of an Illumina

HiSeq 2000, a process that produced a similar number of

reads from all the individually tagged samples together

and from the pool.

Reference transcriptome reconstruction

After trimming low-quality reads using DynamicTrim

(Cox et al. 2010), the Trinity assembler (version 2012-06-

08) was employed to reconstruct the bank vole liver

transcriptome de novo (Grabherr et al. 2011). For compu-

tational reasons, only reads from the pool were used in

the assembly. We then processed the Trinity output by

merging transcripts that were probably derived from the
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same genomic location and subsequently produced tran-

scriptome-based gene models (M. Stuglik, W. Babik &

J. Radwan, unpublished data). In brief, in the first step of

this process, we aggregated Trinity transcripts with over-

lapping ends using CAP3 (Huang & Madan 1999). The

cut-offs for overlap length and per cent identity of the

overlap were 40 bases and 99%, respectively. In the next

step, we discarded contigs that were entirely contained

within other sequences using CD-HIT (Li & Godzik

2006) (settings: identity 0.95 and word size 8). Finally,

MegaBLAST was employed to merge all sequences that

shared at least 70% of the length of the shortest sequence

and had a minimum identity value of 0.96. Contigs were

clustered, aligned and merged to form a single consen-

sus sequence. The ‘reference transcriptome’ that results

from this procedure should contain sequences from all

exons from all genes that are expressed in at least one

transcript and should thus correspond to an assembly of

transcriptome-based gene models.

Mapping, SNP calling and allele frequency estimation

Because mapping algorithms take into account quality

scores, we used nontrimmed reads when mapping and

SNP calling. Reads that mapped onto multiple locations

in the reference transcriptome were discarded.

Reads were mapped onto the reconstructed reference

transcriptome using Bowtie 2 (2.0.0-beta6) and employ-

ing a very sensitive alignment approach (Langmead &

Salzberg 2012). The resulting bam file was post-

processed using SAMtools (Li et al. 2009).

SNP calling was performed separately for the 10 indi-

vidually tagged samples and for the pool using mpileup

in SAMtools. For SNP calling in individual samples, the

default settings were applied; for SNP calling in the pool,

a flat prior for the allele frequency spectrum was used.

Low-quality SNPs were filtered out of the VCF file

that contained information on the individual genotypes.

We excluded SNPs with individual genotypes that were

based on less than five reads, and sites at which more

than two variants were present. We then retained only

SNPs that were reliably genotyped for all 10 individuals

(Phred scores of at least 30 for SNP quality and individ-

ual genotype quality). Moreover, we discarded all con-

tigs that contained one or more SNPs that would have

led us to classify 9 or 10 of the individuals as heterozyg-

otes. As the probability of obtaining such a sample by

chance, even assuming equal allele frequencies for both

variants, is only 0.01, reads that mapped onto such con-

tigs were most probably derived from highly similar par-

alogues. Such stringent filtering practices allowed us to

classify the genotypes at these polymorphic sites as high-

quality SNPs with known ‘true’ allele frequencies in the

sample. In the next step, we assessed how accurately

these ‘true’ values were reflected by the pool.

Accuracy estimates

For each high-quality SNP position, the number of non-

reference bases was calculated (NO). The expected num-

ber of nonreference bases (NE) was the ‘true’ allele

frequency estimated from individually tagged samples

multiplied by the coverage at the SNP position. The

accuracy of the allele frequency estimates was quantified

as the relative estimation error, which was defined as the

absolute value of (NE-NO)/NE.

To quantify the effect of allele-specific expression

level (ASE) on relative estimation error, we first selected

contigs showing evidence of ASE using the following

procedure. For each contig, one SNP with the highest

number of heterozygotes (max 8 for the reasons

explained earlier) was selected. Then, for each heterozy-

gous individual, the hypothesis of equal expression of

both alleles was tested (chi-squared test), using the num-

ber of reads derived from each allele. SNPs with at least

80% of heterozygotes showing P < 0.001 were consid-

ered as indicators of contigs exhibiting ASE. Mean rela-

tive estimation error was compared between ASE genes

and SNPs randomly selected from the data (sampling

the same number of SNPs from each MAF class as in

genes with ASE), and the significance of the difference

between these two groups was tested using randomiza-

tion test.

To assess the effect of inaccuracy in allele frequency

estimation on the results of a typical population

genetic analysis, we simulated a Wright–Fisher popula-

tion (Ne = 10 000, u = 10�9), in which the expected

distribution of allele frequencies is given by equation

φ(i) = 4Neu/i (where 0 < i < 2N; i is the number of cop-

ies of the derived allele) (Charlesworth & Charlesworth

2010). We estimated FST under two scenarios: (i) differen-

tiation was only due to sampling error (allele frequencies

in the sample were known precisely) and (ii) differentia-

tion was due to errors resulting from both sampling a

limited number of individuals and form estimation of

allele frequency from pool. In each of 10 000 simulations,

we sampled one SNP from the expected distribution of

allele frequencies and simulated two samples of 10 indi-

viduals each (sampling from binomial distribution with

P set to population allele frequency) and calculated FST
according to the formula (HT-HS)/HT (Hartl & Clark

2006). Next, we simulated second scenario by adding

estimation error caused by pooling. We replaced the

sample allele frequencies by frequencies randomly

drawn from our empirical results obtained from pool for

the given ‘true’ allele frequency. We calculated FST and
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compared FST distributions between two scenarios using

the Wilcoxon signed-rank test.

Accuracy of gene expression estimation

To estimate gene expression, we used RSEM package (Li

& Dewey 2011). We performed TMM normalization

(Robinson & Oshlack 2010) to account for differences in

the mass of the RNA-Seq samples and thus provide a

scaling parameter for each sample. This parameter was

then used to calculate the fragments per kilobase of tran-

script per million fragments mapped (FPKM). FPKM

was calculated for each transcriptome-based gene model

in each sample. Accuracy was estimated for each contig

with a mean FPKM value higher than one. Relative esti-

mation error was calculated in the same way as for allele

frequency. The mean expression level calculated from 10

individuals was used as the expected value, and

observed values were the FPKM values calculated using

the pool.

Results

Reference transcriptome assembly

A total of 194.1 million read pairs (2 9 100 bp) were

obtained; the average per individual was 8.0 (SD 0.41)

million pairs, and 114.1 million pairs were re-covered

from the pool. Trimming resulted in the removal of 9.6%

of the bases. Trimmed reads from the pool were used to

assemble the liver transcriptome de novo; 181 698 contigs

(contig length max: 16 742 bp; mean: 1111.8 bp; median:

429 bp; N50: 2662 bp) totalling 202.0 megabases were

generated.

Transcriptome assemblers attempt to reconstruct the

sequences of all the transcripts present in the sample,

which results in considerable redundancy in the assem-

bled transcriptome – a large fraction of exons will be

represented many times, reflecting their presence in mul-

tiple alternatively spliced transcripts. While such redun-

dancy reflects biological reality, it is undesirable if one

wants to construct transcriptome-based gene models in

order to detect polymorphism. We therefore further pro-

cessed the results generated by Trinity using a custom

pipeline that aims to produce transcriptome-based gene

models, or a ‘reference transcriptome’. The reference

transcriptome comprised 146 758 contigs (contig length

max, mean, median and N50, respectively: 16 742 bp,

702.7 bp, 353 bp and 1225 bp) and had a total length of

103.1 Mb (Table 1). These contigs represented protein

and nonprotein coding sequences expressed in the liver.

Mapping and SNP calling

Reads that mapped uniquely onto the reference tran-

scriptome (83.8% of raw reads) were used to identify

polymorphic sites. SNPs were identified separately in

individually tagged samples and the pool. SNP calling

performed on the 10 individually barcoded libraries

yielded 264 310 putative SNPs and 40 277 short indels

that had scaled Phred quality scores of greater than 10.

The same analysis on the pooled sample (which differed

only in the use of the flat prior for the allele frequency

distribution) yielded 246 122 putative SNPs and 40 621

short indels.

High-quality SNPs were further analysed. We found

95 contigs that were extremely heterozygous at one or

more sites (probably representing pairs of paralogues),

and all SNPs from these sequences were discarded. In

total, we identified 23 682 high-quality polymorphisms

within 4128 contigs. Only 6336 (26.8%) of high-quality

SNPs within 2380 (57.7%) contigs were called from the

pool. Not surprisingly, polymorphisms with rare vari-

ants (Fig. 2) and a low proportion of alternative variant

reads were under-represented among the SNPs called

from the pool. We found that 7% of SNPs with minor

Table 1 Overview of the assembly of a hepatic transcriptome for bank voles (Myodes glareolus). The transcriptome was assembled using

Trinity and filtered using CAP3, CD-HIT and MegaBLAST. Statistics for the final transcriptome-based gene models are provided in the

last column

TRINITY CAP3 CD-HIT MEGABLAST

Min contig length 201 201 201 201

Max contig length 16 742 16 742 16 742 16 742

Mean contig length 1111.8 1061.6 1030.6 702.7

SD contig length 1529.4 1487.4 1440.9 977.3

Median contig length 429 411 406 353

N50 2662 2587 2504 1225

N contigs 181 698 173 496 171 077 146 758

N contigs > 1 kb 51 988 46 524 44 551 23 512

N contigs in N50 22 252 20 648 20 371 19 101

N bases in contigs 202 007 816 184 191 537 176 303 671 103 123 071

N bases in contigs > 1 kb 151 525 798 135 260 359 127 596 475 56 436 078
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allele frequency (MAF) values of less than 0.25 and 74%

of SNPs with MAF values greater than 0.25 were called

from the pool.

Accuracy of allele frequency estimation

The observed and expected number of reads were

strongly correlated (R2 = 0.96; P < 10�14; Fig 3). Mean

relative estimation error was 0.21 � 0.001 SE (median

0.16), and it was negatively correlated with the minor

allele frequency (Fig. 4). Relative estimation error was

relatively high for SNPs for which MAF equalled 0.05

(mean = 0.33, median = 0.25), but it decreased signifi-

cantly when MAF was greater than 0.25 (mean = 0.12,

median = 0.09) (Fig. 5). However, the absolute differ-

ences in frequencies did not decrease with increasing

MAF (Fig. 6). We found a very weak negative correlation

between the sequencing depth for a given SNP (‘SNP

expression level’) and the relative estimation error

(R2 = 0.002; P < 10�11; Figs 5 and 7).

Relative estimation error correlated significantly with

the coefficient of variation in gene expression level

among individuals (R2 = 0.04, P < 0.10�15; Fig. 8). We

identified 43 contigs (containing 283 SNPs) with
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signatures of ASE. These genes have higher relative esti-

mation error than randomly sampled genes

(mean = 0.32, P < 0.0001, randomization test).

FST values were generally overestimated in the pool

simulation (meanind = 0.026, meanpool = 0.033; Wilcoxon

test: P < 10�15). Also, we observed some extreme outliers

for pools (0.3% observations higher than twice maximum

FSTind), which suggests that in some cases, FST may be

strongly overestimated due to inaccuracy in estimation

of allele frequencies introduced by pooling.

Accuracy of gene expression estimation

In total, 17 861 contigs were analysed to quantify the

accuracy of gene expression estimates. Mean relative

estimation error was 0.14 � 0.001 SE (median 0.12). We

found a significant but very weak negative correlation

between mean expression level and relative estimation

error (R2 = 0.0004; P = 0.01). The means of expression

levels calculated from the individual samples were

highly correlated with those calculated from the pooled

sample (R2 = 0.998; P < 10�5).

Discussion

We used a nonmodel organism to quantitatively assess

the accuracy of allele frequency estimates obtained from

pooled RNA samples. Liver RNA samples of ten bank

voles were sequenced both separately and as a pool.

When we compared the allele frequencies estimated

from the pool with the ‘true’ allele frequencies obtained

from the individual samples, we found that the estimates

from the pool were generally accurate.

We used only one pooled sample as variability intro-

duced by technical issues should be similar for DNA and

RNA pools, and the effect of such variability has been

thoroughly explored for DNA pools (Barratt et al. 2002;

Zhu et al. 2012). However, RNA pools differ from DNA
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the relative estimation error values associ-

ated with the minor allele frequency clas-
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Fig. 5 Allele frequency relative estimation errors for different

sequencing coverage and MAF values. The surface contours

were obtained using the distance-weighted least squares method

for all 23 682 high-quality SNP positions. Relative estimation

error was calculated using the expected and observed number of

reads of minor frequency alleles in the pooled sample.
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pools in that the biological variation in the RNA pool is

due to inherent differences in expression levels among

genes and individuals. As a result, it is more important

to examine the accuracy of frequency estimates for SNPs

called from multiple genes found in a sample of individ-

uals than to examine that of a few genes across a number

of pools.

SNP calling in the de novo assembled transcriptome

For nonmodel organisms, transcriptome assembly is

the first, crucial step of RNA-based SNP identification

(Singhal 2013). This step is challenging, as divergent

alleles may be identified as separate transcripts,

sequences of similar paralogues may be lumped

together and chimeric transcripts may arise as arte-

facts of the assembly process. The effectiveness of

transcriptome reconstruction has been discussed in

several other studies (Bao et al. 2011; Earl et al. 2011;

Martin & Wang 2011; De Wit et al. 2012; Singhal

2013), in which different sequencing strategies and

assemblers were compared. We should note that, for

a comprehensive test of this problem in silico, a high-

quality reference genome is needed (Vijay et al. 2013).

If no reference genome is available, we have to accept

an unknown rate of false positives and subsequently
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test candidate SNPs in future analyses (Singhal 2013).

While we recognize that there are problems related

to de novo transcriptome assembly, we wish to

emphasize that the results of our study appear to be

robust to the many possible artefacts of transcriptome

assembly.

First, we focused on high-quality, high-coverage SNPs

that were derived from genes that were at least moder-

ately expressed and had well-assembled transcripts. Sec-

ond, by discarding SNPs called from contigs that

exhibited excessive heterozygosity, we probably filtered

out similar paralogues that were represented by a single

transcriptome-based gene model (TGM). Heterozygosity

at a biallelic locus is not expected to exceed 0.5, and, even

then, we are unlikely to observe 9 or 10 heterozygotes of

10 individuals (P = 0.01); therefore, sites with high het-

erozygosity probably indicate that the contigs represent

more than one region in the genome. By removing them

from our analyses, we reduced the number of falsely

positive SNPs caused by merging paralogues during

assembly and reference transcriptome reconstruction.

Third, in chimeric transcripts, individual SNPs were

most probably properly called; consequently, the pres-

ence of such chimeras, which may constitute a noticeable

fraction of transcripts (Edgar et al. 2011), should not sys-

tematically bias our results. Taken together, these filter-

ing steps considerably reduced the number of putative

SNPs, but the numbers of retained SNPs and genes were

still large. This data set provided information on the

accuracy of allele frequency estimates for high-quality

SNPs varying in sequence coverage and minor allele fre-

quency.

SNP identification in the sample pool

Our results suggest that SNP calling from the pool

remains challenging for rarer alleles. However, this prob-

lem is common to pooling approaches and has been

widely discussed in genome resequencing studies focus-

ing on improving the discovery of SNPs with rare vari-

ants (Bansal et al. 2010). Several programs dedicated to

SNP calling from pools, such as PoPoolation2 (Kofler

et al. 2011), vipR (Altmann et al. 2011) or Varscan

(Koboldt et al. 2009), are available, but they usually

require at least two pooled samples. In most experimen-

tal and case–control studies, at least two pools are com-

pared (Sham et al. 2002), and thus, the identification of

polymorphic positions and the estimation of allele fre-

quency may be considered somewhat separate tasks. If

true sample allele frequencies can be accurately esti-

mated from pools, then existing software used to identify

SNPs in DNA pools could potentially be successfully

applied to RNA-Seq surveys as well (Thumma et al.

2012). Moreover, in experimental and case–control stud-

ies, the aim is to identify SNPs whose allele frequencies

differ between groups. At such sites, alternative variants

should occur at least an intermediate frequency in one

group and thus be easily detected with available soft-

ware. For example, in our study, 74% of SNPs for which

MAF values were greater than 0.25 were called from the

pool. SNP discovery is therefore not a limiting factor in

the identification of candidate sites from pooled samples

because our results support the ability of a pooled

approach to identify most of the relevant genetic varia-

tion.
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Fig. 8 Relationship between coefficient of

expression level variation and the accu-

racy of the allele frequency estimates. The

correlation plot includes all high-quality

SNPs. The regression line is given by

equation y = 0.13 + 0.41x.
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Accuracy of allele frequency estimation from the pooled
sample

Many population genetic analyses require estimates of

allele frequencies for comparing different natural popu-

lations, experimental treatments or phenotypic classes.

Sampling a finite number of individuals from population

always introduce stochasticity to these estimates, which

was studied elsewhere (Futschik & Schl€otterer 2010;

Buerkle & Gompert 2013). Obviously, as more individu-

als are sequenced from a population, allele frequencies

are estimated more precisely and bias is eliminated. In

some cases, however, we are not able to sample as many

individuals as required (small groups/populations, labo-

ratory colonies of vertebrates, etc.). Estimates of allele

frequencies obtained from small samples have wider

confidence intervals and are biased, which should be

taken into consideration (Gompert & Buerkle 2011). In

this study, we estimated the magnitude of additional

uncertainty in estimates of allele frequencies introduced

by variation in expression level in pooled RNA sample.

We found that estimates of allele frequency obtained

from the RNA pool were acceptable for many purposes.

The strong correlation between the observed and

expected number of nonreference bases demonstrates

the utility of pooled RNA samples in wide range of pop-

ulation genetic analyses. The correlation we found was

only slightly weaker than that found in a study in which

pooled DNA was used (Sham et al. 2002; Ramos et al.

2012). Moreover, almost no bias was present for SNPs

with lower expression levels, and estimates of expression

level obtained from the pool were accurate even for

genes exhibiting moderate expression. However, it is

important to note that we focused on genes that were at

least moderately expressed by all individuals, and thus,

extrapolating our results to genes expressed at very low

levels would not be justified.

On the other hand, in our analysis, some gene and

SNP categories demonstrate elevated estimation error.

We found a negative correlation between MAF and rela-

tive estimation error, a result that has been observed for

DNA pools as well (Guo et al. 2013). Along with SNP

discovery, the low accuracy of allele frequency estimates

for rare alleles remains a challenge in analyses of both

DNA and RNA pools.

We found evidence that between-individual variation

in expression increases estimation error only slightly but

significantly: ca. 4% variation in relative estimation error

can be explained by variation in expression level

between individuals. Allele-specific expression also sig-

nificantly influences estimates of allele frequency, but

ASE seems to occur only in a minor fraction of genes (ca.

1% in our data set according to the applied criteria).

These results suggest that inaccuracy in allele frequency

estimation may be higher for some classes of genes, and,

ideally, such genes should be identified and excluded or

analysed separately. Finally, our simple simulations indi-

cate that variation introduced by pooling systematically

increases estimates of population differentiation which

may result in some false positives in outliers’ analyses.

Using RNA pooling has some additional limitations,

namely that a well-assembled reference transcriptome is

needed. When using a pooling approach, we do not have

access to individual genotypes and thus have no possi-

bility of removing sites with excessive heterozygosity.

Therefore, it is worthwhile to invest time and resources

in obtaining a high-quality reference transcriptome and

sequencing several individually barcoded samples to test

and remove the sequences of similar paralogues. These

individuals can be used to explore variation in expres-

sion level between individuals, and for assessment of

ASE. If such resources are available, one can control

additional sources of variation in estimating allele fre-

quency and then pooled RNA-Seq is a reliable technique

to study nonmodel organisms at the genome- and popu-

lation-wide scale.

Obviously, pooled approach is not applicable to

analyses, which require individual genotypes (e.g. esti-

mating admixture coefficient or estimating linkage dis-

equilibrium among loci). Therefore, clear arguments

need to be made for using this approach for molecular

ecology studies. Cost effectiveness of large-scale studies

is the most obvious such case. Although sequencing itself

has become relatively inexpensive, library preparation

remains expensive, especially when many samples are

processed. With two experimental treatments, 4 repli-

cates within treatment and only ten individuals sampled

per treatment, at least 80 libraries need to be prepared.

The cost of library preparation for such a modest experi-

ment would be $4800 (NEBNext� UltraTM Directional

RNA Library Prep Kit for Illumina�) or even up to

$32 000 (Illumina TruSeq Kit (Stranded Total RNA LT)).

This can be reduced ten times if samples within repli-

cates are not barcoded. For studying many populations

of nonmodel species pool RNA-seq may reduce labora-

tory costs drastically. If studied organisms and/or

organs are very small and pooling is necessary to obtain

enough material for library preparation – pooled RNA-

seq is the only viable solution.

Our study tested the accuracy of allele frequency

estimates obtained from RNA pools sequenced using

Illumina technology. We demonstrated that pooled

RNA-Seq approach is a reliable, and cost-effective

strategy for obtaining genome-wide information about

potentially functionally relevant variation, provided that

high-quality transcriptome assembly and stringent SNP-

calling and filtering criteria based on sequencing of sub-

set of individuals are used. The lack of such filtering can

© 2013 John Wiley & Sons Ltd
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result in higher inaccuracy for some categories of tran-

scripts, which may in turn result in a higher rate of false

positives in some downstream analyses. When afore-

mentioned prerequisites are fulfilled, the accuracy

obtained is very similar to that obtained for DNA pools.
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