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The amount and nature of genetic variation available to natural selection affect the rate, course and out-

come of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has

occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence

of a genome-level perspective. Technological advances in recent years should now allow us to answer

many long-standing questions about the nature of adaptation. The data gathered so far are beginning

to challenge some widespread views of the way in which natural selection operates at the genomic

level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects

of the broad field of adaptation genomics. This introductory article sets up a context and, on the

basis of a few selected examples, discusses how genomic data can advance our understanding of the

process of adaptation.
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1. INTRODUCTION
Evolution via natural selection is possible owing to

heritable variation in phenotypic traits [1]. The amount

and nature of genetic variation available to natural

selection may affect the rate, course and outcome of evol-

ution. Consequently, the question ‘What is the genetic

basis of adaptive evolutionary change?’ has intrigued

biologists for decades [2]. This general query consists of

several empirically tractable and interconnected questions

of fundamental importance for our understanding of

evolutionary processes. One key question is whether

adaptation occurs through the rapid fixation of new

mutations or draws from standing genetic variation. If

the latter is true, what are the mechanisms generating

and maintaining adaptively relevant standing variation?

The answer may differ for different organisms and

traits, depending on the number of genes affecting the

trait and the distribution of their fitness effects; this varia-

bility emphasizes the need to understand the genetic

architecture of adaptive traits [3]. Genetic architecture

involves not only the number of genes and the distri-

bution of fitness effects, but also the interactions

between alleles at various loci (epistasis), the degree to

which variation in a particular gene affects multiple

traits (pleiotropy), and the form (if any) of interactions

between a genotype and environment. For example, epis-

tasis may affect the chances that beneficial alleles will

spread [4,5] and pleiotropy may constrain adaptive evol-

ution [6]. A related and as yet unresolved controversy

has long surrounded the relative importance of protein-

coding versus cis-regulatory adaptive changes. Arguments

in favour of both alternatives have been advanced, and the
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data that have been collected are still insufficient to

provide quantitative answers [7–10].

While questions regarding the genetic basis of adaptive

change may only be reliably answered using good-quality

data, researchers, until recently, had been constrained by

the lack of a genomic perspective. Enormous progress in

high-throughput DNA sequencing technologies over the

last few years has enabled researchers to sequence gen-

omes at the population scale, thus providing unbiased,

genome-wide records of evolutionary changes [11,12].

These advances have at last brought a truly genomic per-

spective to the study of adaptive evolutionary change. We

hope that this Special Feature, which brings together sev-

eral papers dealing with various aspects of adaptation

genomics, will give the reader a taste of the most recent

developments in the field. The few articles in this Special

Feature certainly cannot cover all the genomic approaches

used in the study of adaptation, nor could we do so in our

introductory article. Rather, we briefly discuss a few

examples that illustrate how genomic data can advance

our understanding of the process of adaptation and

refer interested readers to a number of excellent recent

review articles summarizing specific topics.
2. A GENOMIC PERSPECTIVE ON ADAPTATION:
A FEW EXAMPLES
(a) Loci of adaptation

There has been a long debate regarding the properties of

genes underlying adaptive changes (see [13] for a review

and historical perspective). The influential infinitesimal

model proposed by Fisher assumes that adaptation

occurs via mutations of very small effects arising in a very

large number of genes. In the late 1980s and throughout

the 1990s, this view was seemingly challenged by reports

suggesting that quantitative trait loci (QTL) of large effects

may be common [14–16]. Genomic resources should, in
This journal is q 2012 The Royal Society
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principle, now allow us to replace anonymous marker-

based QTLs with quantitative trait nucleotides (QTNs),

the nucleotide substitutions associated with variation in

quantitative traits. However, large-scale genome-wide

association studies in humans have detected surprisingly

few QTNs (reviewed in [17]), and those that have been

found account for a very small fraction of variation in com-

plex traits such as blood pressure [18], height [19] or

susceptibility to common diseases [20]. Similarly, while

many QTLs have been reported for Drosophila wing

shape [21], the search for QTNs has largely failed, with

the best candidate explaining only 1 per cent of variation

[22]. One explanation for this apparent incongruence is

that QTLs are located in regions of many linked QTNs of

small effect [23]. This QTL/QTN inconsistency highlights

the usage of genome assembly in inferring the genetic basis

of adaptation. If single nucleotide polymorphisms (SNPs)

associated with traits of interest cannot be placed onto

reference genome sequence, it is impossible to distinguish

causality from linkage and to infer effect sizes explained

by individual SNPs.

While these new results do not invalidate well-

documented cases of adaptation via large-effect genetic

variants [24,25], complex quantitative traits, such as

body size, longevity, fecundity and length of development,

seem to have a highly polygenic basis. Even if common,

these genes of very small effect may nonetheless be prac-

tically impossible to pinpoint even with huge datasets, a

dilemma that emphasizes the need for new alternatives

to the QTN approach [17].
(b) Genomics of adaptive change: hard and

soft sweeps

The effectiveness of selection depends greatly on effective

population size and recombination rate [26,27]; thus it

is very probable that the process of adaptation will differ

fundamentally in taxonomic groups differing in these par-

ameters. Models of adaptive evolution have traditionally

assumed adaptation from de novo mutations [13,28].

Indeed, as reviewed by Burke in this issue [29], such

scenarios seem to fit the evolution of microorganisms

reasonably well. Whole-genome sequencing in the course

of bacterial experimental evolution allows researchers to

trace the origin and dynamics of adaptive mutations.

Most fixed mutations are beneficial [30,31], and fixations

generally occur quickly, although multiple beneficial

mutations may compete for fixation [32]. While the rate

of adaptation in experimental evolution studies decreases

with time, a result that may be linked to widespread nega-

tive epistasis [33], the rate of genomic evolution remains

surprisingly constant [30].

However, in larger organisms, which typically have

smaller effective population sizes, adaptation from stand-

ing variation may be commonplace (reviewed in [34]).

Soft sweeps [29,35], in which beneficial QTNs occur in

variable genetic backgrounds, may explain why clear

genomic signatures of the fixation of newly arisen ben-

eficial mutations are often not observed in obvious cases

of adaptive evolution [36]. The long-term effective size

of the human population seems comparable to those

used in experimental evolution studies on non-microbial

organisms (reviewed by Burke in this issue [29]), and,

as in most human adaptations [37], complete selective
Proc. R. Soc. B (2012)
sweeps are rarely observed in such experiments.

Burke [29] discusses how the complex genomic landscape

of adaptive changes revealed by the genomic analyses of

selection experiments may be explained by a combination

of soft, incomplete sweeps and subtle changes in allele fre-

quencies that generate dramatic phenotypic changes in

highly polygenic complex traits. She also proposes how

experimental evolution studies can be modified to allow

stringent testing of the effects of population size and

recombination on the origins and fates of adaptive alleles.
(c) Parallel evolution

If genetic variation in certain traits is maintained by

some form of balancing selection, or many polymorphisms

exhibit conditional neutrality, repeated adaptation from

standing genetic variation may result in parallel evolution.

The genetic basis of parallel adaptations has intrigued

researchers for years because its understanding may help

answer questions about repeatability of evolution [38].

It appears that multiple outcomes are possible: identi-

cal polymorphisms repeatedly recruited from standing

variation [39], independent adaptive mutations in a

single gene or changes in various genes involved in par-

ticular pathways [25,31,34,40]. Conte et al. (this issue

[41]) provide the first systematic assessment of the prob-

ability of the same gene being used by convergent or

parallel evolutionary processes. The numbers are surpris-

ingly high, with probability estimates of gene reuse

ranging from 0.32 (based on genome-wide linkage

studies) to 0.55 (based on candidate gene data).

Rough calculations based on these estimates indicate

that the effective number of genes available to adaptive

evolution in such cases may typically be as small as two

or three. Possible reasons for this low number may be

the limited availability of adaptive mutations or effect

sizes and mutation rates favouring repeated gene use.

Apart from the recruitment of genes from standing gen-

etic variation, which may increase the probability of

gene reuse in closely related populations or taxa, other

factors that limit the effective number of genes available

for adaptation require further study. The study of Conte

et al. [41] also highlights the usage of the genome-wide

approach compared with the candidate-locus approach,

as the latter appears to bias estimates upwards.
(d) Evolution of genomes

The architecture of the genome itself may be shaped by

the action of natural selection or its relative inefficiency

[26,42]. The excess DNA that appears in the genome

as a consequence of the activity of selfish DNA elements

such as introns or transposons is considered slightly

deleterious (mutational-hazard hypothesis). In very large

populations of microorganisms, selection effectively

removes this excess DNA, whereas organisms with smal-

ler effective population sizes accumulate excess DNA

because drift overcomes weak purifying selection. Empiri-

cal evidence derived from genomic studies seems to

support the mutational-hazard hypothesis ([43] but see

[44,45]). The other side of the coin is, however, the possi-

bility that extra DNA, which may be initially slightly

deleterious but that persists owing to the inefficiency of

selection, could then be recruited to serve as the basis

for new adaptations [43].

http://rspb.royalsocietypublishing.org/
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Gene duplications have long been considered a major

source of evolutionary novelty, since new functions can

evolve by modification of one of the duplicated copies

while the original function can be retained by the other

copy [46]. The question remains as to how the duplicated

copy is initially maintained. The traditional view that the

duplication event is initially neutral has been challenged

by Kondrashov et al. [47], who argued that duplica-

tion is likely to affect the dosage of the gene product.

Kondrashov (this issue [48]) reviews the available evi-

dence and concludes that, especially under stressful

conditions, the higher level of expression resulting from

gene duplication is indeed often beneficial. He encoura-

ges researchers to look for evidence of gene duplication

when scrutinizing genomes for adaptation to stress.

(e) Genomics of speciation

The process of speciation, which is responsible for gener-

ating biodiversity, has an inherent genomic component.

Speciation may be viewed from the genomic perspective

as the gradual development of reproductive isolation

across the genome [49–51]. Recent interest in the process

of selection-driven ecological speciation, which may occur

in spite of gene flow, has spurred interest in assessing the

number, size and extent of clustering of genomic regions

subject to disruptive selection [52].

New, genome-wide data may modify previous views

and contribute to an understanding of the mechanisms

responsible for the maintenance of such regions of geno-

mic differentiation [53–55]. The study by Nosil et al.

(this issue [56]) emphasizes that, even in a seemingly

simple case of parallel ecological speciation and despite

clear phenotypic parallels, genomic patterns of divergence

between replicate pairs of incipient species may be

surprisingly complex, with multiple factors affecting

genomic divergence.

The gradualist perception of the speciation process,

where parts of the genome may be exchanged between

species at various stages of their diversification, encom-

passes not only the genetic basis of local adaptation and

reproductive isolation, but also the exchange of adaptive

alleles between species [57–59]. Genomic data now

allow a comprehensive assessment of the extent of adap-

tive introgression, as illustrated by recent work on a

species complex in which Mullerian mimicry occurs [60].
3. PROSPECTS
As the articles in this Special Feature testify, this is an

exciting time for the field of adaptation genomics.

Long-standing questions can now be addressed at a

scale and level of precision that we could have hardly ima-

gined a decade ago, with new approaches providing some

definite answers while also often revealing the limitations

of our current thinking about adaptation genomics. This

situation is well illustrated by studies of human evolution-

ary history: it was anticipated that extensive genomic and

financial resources would help provide a detailed under-

standing of the molecular basis of numerous human

adaptations and diseases. The picture emerging from sev-

eral years of intense research is, however, somewhat

sobering [20,36,61,62]. Candidate loci as well as genomic

scans have resulted in some spectacular discoveries,

including signals of independent incomplete sweeps at
Proc. R. Soc. B (2012)
lactase promoters in Europe and Africa [63,64] or genes

underlying adaptation to high altitude [65]. Many scans

for recent positive selection have been performed that

have identified large portions of the genome as targets.

However, most of the findings from individual studies

have not been replicated and relatively few unequivocal

targets of positive selection have been discovered in the

human genome [61]. These findings contrast with the

overwhelming evidence for recent adaptive phenotypic

evolution in our species [36]. Adaptations have obviously

been occurring, but they have not taken the form of

classical selective sweeps [37]. The accumulating empiri-

cal evidence has led to renewed interest in population

genetics models of adaptation from standing genetic

variation, including soft sweeps [35], as well as an

appreciation of the highly polygenic nature of most

adaptations in humans [66].

Furthermore, genomic approaches offer completely new

possibilities in the study of adaptation. For example, it has

become feasible to infer selection and identify its phenoty-

pic targets from genomic patterns of variation observed

under various environmental conditions, which may be

termed the ‘reverse ecology of adaptation’. The traditional

genetics of adaptation linked observed phenotypic diver-

gence to underlying genetic variation. The phenotypic

traits associated with adaptation are not always easy to

identify, especially in microrganisms. High-throughput

sequencing technologies now allow an examination of

whole-genome patterns of genetic diversity within and

between populations and the identification of those

genes that show signatures of recent positive selection

and/or divergent adaptation between populations. For

example, Ellison et al. [67] sequenced transcriptomes of

48 Neurospora crassa isolates and, on the basis of detected

SNPs, identified two thus-far cryptic, recently diverged

populations. Further high-resolution scans for divergent

chromosomal regions identified areas that were enriched

with genes involved in responses to low temperature.

Indeed, experiments designed on the basis of these results

showed that the cryptic populations differed in fitness at

low temperatures. This study demonstrates that by scan-

ning genomes from multiple populations, researchers may

not only be able to identify genes responsible for local adap-

tation, but also learn about the adaptive phenotypes and

selective pressures acting on them.

As evident from the reviews contained in this Special

Feature, existing data already offer important insights

into the genomic basis of adaptation, but generalization

will require more genome-wide studies, ideally including

a diverse range of taxa. For example, Kondrashov’s

review [48] indicates that both data from additional study

systems and progress in the genomic analysis of copy

number variation are required to fully assess the role of

gene duplications in adaptation. There are also areas of

study, as argued in the papers by Nosil et al. [56] and

Conte et al. [41], in which there are still simply too few

data available from which to draw generalizations. In

these areas, additional genomic information from suitable

systems may speed progress in addressing questions of

speciation genomics or the genomic nature of parallel adap-

tation. Carefully designed experimental evolution studies

using new model systems, such as sexually reproducing

microbes, may overcome the limitations of traditional

approaches and allow a careful dissection of the process

http://rspb.royalsocietypublishing.org/
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of adaptive evolution, as suggested by Burke [29]. Finally,

the sequencing of the genomes of many non-model organ-

isms will allow the precise inference of natural selection’s

action on genomic regions, which is thus far only available

for humans and a few model organisms.
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