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Abstract

Experimental evolution combined with genome or transcriptome resequencing (Evolve and Resequence) represents
a promising approach for advancing our understanding of the genetic basis of adaptation. Here, we applied this strategy
to investigate the effect of selection on a complex trait in lines derived from a natural population of a small mammal. We
analyzed the liver and heart transcriptomes of bank voles (Myodes [=Clethrionomys] glareolus) that had been selected for
increased aerobic metabolism. The organs were sampled from 13th generation voles; at that point, the voles from four
replicate selected lines had 48% higher maximum rates of oxygen consumption than those from four control lines. At the
molecular level, the response to selection was primarily observed in gene expression: Over 300 genes were found to be
differentially expressed between the selected and control lines and the transcriptome-wide pattern of expression distin-
guished selected lines from controls. No evidence for selection-driven changes of allele frequencies at coding sites was
found: No single nucleotide polymorphism (SNP) changed frequency more than expected under drift alone and frequency
changes aggregated over all SNPs did not separate selected and control lines. Nevertheless, among genes which showed
highest differentiation in allele frequencies between selected and control lines we identified, using information about
gene functions and the biology of the selected phenotype, plausible targets of selection; these genes, together with those
identified in expression analysis, have been prioritized for further studies. Because our selection lines were derived from a
natural population, the amount and the spectrum of variation available for selection probably closely approximated that
typically found in populations of small mammals. Therefore, our results are relevant to the understanding of the
molecular basis of complex adaptations occurring in natural vertebrate populations.
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Introduction
One of the central goals of evolutionary biology is to under-
stand the genetic mechanisms by which organisms evolve
new, adaptive phenotypes under natural selection and thus
diverge phenotypically (Stapley et al. 2010; Butlin et al. 2012).
Despite decades of research, detecting and deciphering the
molecular changes underlying adaptation remain challenging
tasks to which researchers have applied various approaches,
such as study of candidate genes, genome-wide scans for
positive selection or experimental evolution (Sabeti et al.
2007; Garland and Rose 2009; Stapley et al. 2010; Barrett
and Hoekstra 2011; Fournier-Level et al. 2011). Recently, how-
ever, the Evolve and Resequence (E&R) approach has been
gaining popularity. E&R studies provide better control over
confounding factors than other approaches and allow inves-
tigators to choose the traits under selection (Turner et al.
2011; Kawecki et al. 2012). This approach involves genetic
analyses of populations of organisms that are either adapted
to specific, experimentally controlled ambient conditions, or
that are selected for increased performance with respect to a
specific behavioral, life-history, or morphophysiological trait.
Such studies have helped to answer questions concerning

adaptation (Tenaillon et al. 2012; Soria-Carrasco et al. 2014),
the importance of new mutations (Burke et al. 2010), and the
genomic patterns of a recent response to selection
(Johansson et al. 2010; Pettersson et al. 2013).

The sources of adaptive variation appear to vary among
evolutionary lineages. For example, extensive work on micro-
organisms has contributed to our understanding of adapta-
tion scenarios that are driven by selection acting on new
mutations: A substantial number of de novo mutations are
expected during the course of experiments in such organisms
as a result of the large population sizes involved (Herring et al.
2006; Barrick et al. 2009; Tenaillon et al. 2012). However, in
multicellular, sexually reproducing species (the subject of this
study), standing genetic variation is the main source of
variation at the initial stages of adaptive evolution (Barrett
and Schluter 2008; Burke et al. 2010). The E&R approach has
been used to comprehensively and successfully investigate
some traits in Drosophila melanogaster (Teot�onio et al.
2009; Burke et al. 2010; Turner et al. 2011); for example,
Burke et al. (2010) studied flies that had been selected for
accelerated development for 600 generations. They con-
cluded that the probability of fixation of selected variants is
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relatively low and that selection does not readily expunge
genetic variation (Burke et al. 2010). Subsequent studies
using fruit flies have confirmed the complex evolutionary
trajectories of selected variants and emphasized the impor-
tance of epistatic interactions (Huang et al. 2012; Orozco-
Terwengel et al. 2012).

The genetic response to selection at the early stages of
adaptation is less well understood in vertebrates, which
usually have smaller population sizes (Johansson et al. 2010;
Chan et al. 2012; Pettersson et al. 2013). Interestingly, how-
ever, the results from the few experiments performed thus far
contrast with those obtained from D. melanogaster. For in-
stance, in lines of chickens that had been selected for high and
low body mass, Johansson et al. (2010) observed many genetic
regions with fixed differences; likewise, signals of classical, hard
selective sweeps were detected in a mouse line that had been
selected for high body mass (Chan et al. 2012). In these stud-
ies, the high number of regions detected that were presum-
ably under the influence of divergent selection (50 in chickens
and 67 in mice) suggests that the initial phase of selection
substantially increases divergence between lines while simul-
taneously reducing polymorphism within them. However,
these results may reflect the differences in experimental
setup rather than true contrast between vertebrates and
Drosophila. Both vertebrate experiments utilized crossed
inbred lines as a base population. In such cases long haplotype
blocks are present at the beginning of the experiment and
they may be fixed rapidly in small experimental populations,
mimicking the effects of hard sweeps. Such situations are less
likely in nature, where at the early stage of adaptation stand-
ing genetic variation is subject to selection. To understand the
basis of adaptive processes occurring in the wild, it is therefore
crucial to conduct selection experiments that control for the
effect of genetic drift and utilize lines derived from natural
populations. Although selection experiments on nonmodel
organisms were always possible to perform, in practice they
were rarely undertaken, partly because until recently uncover-
ing molecular genetic mechanisms of the evolution in non-
model organisms was often not possible. This has changed
with the advent of high throughput sequencing (Schl€otterer
et al. 2014).

In this study, we used high-throughput transcriptome
sequencing to test whether recent, intense selection acting
over multiple generations in mammalian populations would
result in repeatable changes in the frequencies of variants in
protein-coding genes and/or patterns of gene expression. This
study was performed using an experimental evolution model
system, with four lines of bank voles (Myodes
[=Clethrionomys] glareolus), selectively bred for high swim-
induced aerobic metabolism (A lines) and four unselected
control lines (C lines; Sadowska et al. 2008). The experiment
has been established as a tool for testing hypotheses concern-
ing correlated evolution of aerobic locomotor performance
and basal metabolic rates, which is believed to have been a
crucial element in evolution of terrestrial vertebrates (litera-
ture cited in Sadowska et al. 2005, 2008). Thus, the model is
likely to illuminate many ecophysiological questions concern-
ing physiological genomics and the evolution of endothermy

(Nespolo et al. 2011; P�erusse et al. 2013). The swim-induced
maximum rate of oxygen consumption differed significantly
between the selected and control lines already in generation
2 (Sadowska et al. 2008), and in generation 13 it was 48%
higher in A-line voles than in C-line voles (mean� SD:
5.32� 0.64 ml O2/min vs. 3.59� 0.57 ml O2/min, respectively;
Chrzascik et al. 2014; Stawski et al. 2015; see also supplemen-
tary material S1.3, Supplementary Material online). Voles
from the A lines (also referred to as “selected” lines) differed
significantly from control voles not only in the trait directly
under selection but also in their basal metabolic rate and
a number of other behavioral and morphophysiological
traits (supplementary material S1.3, Supplementary Material
online). This experiment presented a unique opportunity to
study the genetic basis of the response to selection in mam-
mals thanks to a combination of several factors: 1) Selection
could operate on the natural genetic variation directly derived
from a wild population, 2) known pedigrees allowed for
the exact calculation of drift expectations, 3) the trait un-
der selection was complex and ecologically important, and
4) the replicated lines provided an appropriate system
to study the role of drift in phenotypic and genetic
differentiation.

The eight lines (four selected and four control) were se-
quenced using a pooled RNA-Seq approach (Konczal et al.
2014). We used transcriptome analysis as a convenient way to
determine whether the response to selection at the molecular
level was dominated by gene expression or structural changes.
King and Wilson (1975) proposed that adaptive evolutionary
change is largely due to changes in gene expression, and there
is empirical evidence from genetic mapping and interspecies
comparisons that both support (Wray 2007; Jones et al. 2012)
and contradict this view (Hoekstra and Coyne 2007). A recent
study of patterns of polymorphism and divergence in murid
rodents suggested that most of adaptive changes appear in
regulatory regions. On the other hand, wider regions of
reduced diversity around exons than around conserved non-
coding elements may be interpreted as a result of substan-
tially larger effects of adaptive substitutions (Halligan et al.
2013). However, it is unclear whether rapid adaptation from
standing genetic variation produces similar patterns. To
address the question of the relative importance of coding
mutations versus changes in expression levels, we studied
the transcriptomes of two organs: The heart, which plays a
crucial role in an organism’s aerobic capacity (Bye et al. 2008),
and the liver, which, as a central metabolic organ (Malarkey
et al. 2005; Konczal et al. 2014), was a promising target for
investigations of the molecular mechanisms that were re-
sponsible for the increased basal metabolism observed in
selected lines. The scale of the project limited the possibility
of detecting significant responses to selection in allele fre-
quencies in coding regions or gene expression only to loci
of large effects. However, we could still infer the role of many
loci of small effect if selection changes allele frequencies in
coding regions or gene expression of many genes in replicable
way (across the four selected and four control lines). In such
case, the aggregate effect of these changes should result in
multidimensional differentiation of selected lines from
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controls (Turchin et al. 2012), although covariances of allele
frequencies, resulting from between-population component
of LD (Linkage Disequilibrium; Ohta 1982), may weaken this
effect (Storz 2005; Le Corre and Kremer 2012).

We identified over 300 differentially expressed genes that
are associated with diverse molecular functions; many of
these functions appeared to be highly relevant to the pheno-
typic response to selection for increased aerobic metabolism.
This result, combined with significant clustering of genome-
wide transcriptional profiles, highlights the role of rapid
changes in gene expression at the early stages of adaptive
evolution. In contrast, allele frequency changes in coding se-
quences appear to play, at best, a minor role: The differences
observed in the allele frequencies between the selected and
control lines could be entirely explained by drift and the ag-
gregate effect of allele frequency changes does not separate
selected lines from controls. Nevertheless, among the genes
that showed the highest differentiation in allele frequencies,
we identified, on the basis of their molecular function, a set of
candidates, which may possibly contribute to phenotypic
changes between the selected and control lines. These
genes should be prioritized as a target for future research.

Results

Single Nucleotide Polymorphisms

From each sample, an average of 37.1 (�10.6 SD) million
1� 100 bp reads were obtained; of these, 75.9% were uniquely
mapped to the bank vole liver and heart reference transcrip-
tomes (table 1). After several steps of data filtering (see
Materials and Methods), we identified 172,246 single nucleo-
tide polymorphisms (SNPs). The vast majority of identified
variants were found in putative protein-coding genes, with an
average of 3.95 and 3.48 SNPs per kilobase in open reading
frames (ORFs) and untranslated regions (UTRs) of SNP-con-
taining contigs (table 2).

To estimate effective population sizes, the mean inbreed-
ing coefficient (F) was calculated from pedigree for each of the
four selected (A) and four control (C) lines in each generation.
The degree of inbreeding increased slightly faster in the
selected lines, probably reflecting a subtle difference in
the breeding scheme between the selected and control
lines (see Materials and Methods). The mean effective popu-
lation size (Ne) was about 16.4% lower in the selected than in
the control lines (56.1 vs. 67.1; P = 0.06, t-test; fig. 1A). To
evaluate the effect of differences in Ne between lines on the
amount of genetic variation, we examined the allele fre-
quency spectra (fig. 1B). Specifically, we calculated for each
line the number of such SNPs which were polymorphic in the
entire data set but showed little or no variation (minor
allele frequency, MAF< 0.05) within the line. An analysis
of covariance (ANCOVA) was used to examine how well
Ne (covariate) and treatment (selected vs. control lines)
explained the number of such SNPs. We found a significant
effect of Ne (F(1,5) = 6.92, P = 0.047), but no effect of treat-
ment (F(1, 5) = 0.14, P = 0.72; fig. 1D).

For each SNP, FST values were calculated between all pairs
of lines. Mean pairwise FST distances did not reveal any

clustering of selected or control lines (F(1, 6) = 0.97, P = 1.00,
randomization test; fig. 1C); and variation among selected
lines (calculated as a mean distance to centroids) was slightly,
but nonsignificantly higher than that between control lines
(F(1, 6) = 1.17, P = 0.32; analysis of variance [ANOVA]). The
two control lines (C1, C3) with the largest effective popula-
tion sizes were least distant from each other, suggesting that
drift played the dominant role in the differentiation of allele
frequencies among lines.

Additionally, a principal components analysis was per-
formed to look for correlated changes in allele frequencies
in various subsets of SNPs; such changes could reflect the
response of multiple genes to the same selection pressure.
None of the eight PCs clearly differentiated between selected
and control lines (supplementary fig. S2.1, Supplementary
Material online).

In the next step, folded allele frequency spectra were com-
pared both between selection regimes and with expectations
generated from simulations of genetic drift over the course of
the experiment. Forward simulations were performed using
known pedigrees; for the initial allele frequency spectrum,
these simulations used the average spectrum calculated
from control lines.

The allele frequency spectra were less skewed in the sim-
ulated data than in the observed data (fig. 1B), which could
have been caused by two effects: Bias in the estimation of the
initial allele frequency spectrum or selection against slightly
deleterious alleles. We assessed the overall effect of deleterious
alleles by comparing the allele frequency spectra of synony-
mous and nonsynonymous sites. Minor allele frequencies
were lower for nonsynonymous SNPs than for synonymous
SNPs (synonymous median MAF = 0.091, nonsynonymous
median MAF = 0.068; P = 10�16; KS (Kolmogorov Smirnov)
tests), indicating the presence of purifying selection. For

Table 1. Overview of the Assembly of Bank Vole Transcriptomes.

Liver Heart

No. of genes 146,758 252,281

No. of genes 4 1 kb 23,512 24,825

N50 gene length (bp) 1,225 650

No. of genes within N50 19,101 47,439

No. of genes with likely CDS 18,050 11,110

N50 of genes with likely CDS 3,296 3,081

No. of bases (Mb) 103.1 134.9

NOTE.—N50, 50% of the assembly length is in genes of the length of N50 bp or
longer; genes, TGMs contain both coding and noncoding sequences; genes with
likely CDS, genes containing successfully annotated ORFs.

Table 2. Overview of SNPs Used for Analyses.

No. of SNPs 172,246

No. of genes with SNPs 15,043

No. of nonsynonymous SNPs 22,963

No. of synonymous SNPs 44,844

No. of UTR-located SNPs 71,657

No. of SNPs in noncoding genes 32,782
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synonymous sites, the difference in the percentage of rare
variants between simulated and observed sites was 2.7%; in
contrast, the difference was 7.4% for nonsynonymous sites.

If the same alleles contribute to the response to selection
in all lines, SNP frequencies in the selected lines should
diverge from those in the control lines to a greater degree
than expected under neutrality. To investigate whether such
effect occurred, we identified variants that had ranges of allele
frequencies nonoverlapping between the selected and the
control lines (3,233 [1.88%] SNPs in 1,873 genes). The
number of SNPs with nonoverlapping allele frequencies was
significantly lower than expected from drift simulations
(P = 0.01; randomization test), but this effect was not signifi-
cant for subsets of synonymous (1.97%, P = 0.33, randomiza-
tion test) or nonsynonymous SNPs (1.96%, P = 0.78,
randomization test). For each of these sites, the minimum
allele frequency difference between the 16 possible A–C
comparisons (diffStat) was used as a composite statistic
(Turner et al. 2011). The distribution of diffStat values did
not differ between the data and drift simulations, and we
did not observe overrepresentation of high diffStat values
(supplementary fig. S2.2, Supplementary Material online).

The relatively small population sizes decrease the popula-
tion recombination rates, which may cause entire long hap-
lotypes to drift. To control for the effect of linkage within
genes, we used the following procedure. First, we generated
1,000 data sets consisting of SNPs sampled randomly one per
gene. Then, for each data set the number of SNPs with the
ranges of allele frequencies nonoverlapping between selection

and control lines was calculated. Finally, we recorded the
proportion of data sets in which the number of SNPs with
nonoverlapping allele frequencies was higher than expected
under drift (upper 10% of the distribution from simulations).
None of the data sets fell into the upper 10% of the distribu-
tion, and the relative number of differentiated SNPs was
slightly lower than expected from simulations (P< 10�50;
t-test). In coding regions this effect was mostly explained
by nonsynonymous sites (P< 10�50, t-test), whereas the
fraction of synonymous SNPs with nonoverlapping allele
frequencies closely followed drift expectations (P = 0.15;
t-test; supplementary fig. S2.3, Supplementary Material
online).

To get some insight about the power to detect variants
under selection in our experiment, we performed pedigree-
based simulations of selection. These simulations were used
to estimate the probability of obtaining nonoverlapping allele
frequencies between the selected and control lines, depend-
ing on the strength of selection and initial allele frequency.
With increasing selective advantage the probability of obtain-
ing nonoverlapping frequencies increased considerably
(s = 0.05–5.5%; s = 0.2–41.6%, averaged over the range of ini-
tial allele frequencies; supplementary fig. S2.4, Supplementary
Material online). The probability of obtaining nonoverlapping
frequencies after 13 generations was highest when the favored
allele initially segregated at an intermediate frequency (initial
frequency 0.05–5.8%; 0.5–29.9%; 0.9–4.0%, averaged over the
range of selection coefficients). This probably reflects the fact
that rare positively selected variants will often be lost due to
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FIG. 1. Effect of selection and population size on allele frequency changes in the bank vole selection experiment. (A) Effective population sizes (Ne) of
selected (gray) and control (white) lines, calculated from pedigrees for 13 generations of the selection experiment. (B) Folded allele frequency spectra for
selected (gray) and control (white) lines, compared with pedigree-based simulations (dots—expectations from simulations). (C) Multidimensional
scaling plot (MDS) of genetic distances (pairwise FST) between selected and control lines. Triangles represent selected lines; circles represent controls.
The MDS plot drawn using mean pairwise FST values calculated for all SNPs. (D) Regression of the number of SNPs with rare variants (MAF< 0.05) on
effective population size. Number of rare variants in thousands.
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drift in some of selected lines. Similarly, selected variants at
high initial frequencies will often become fixed in at least
some control lines.

Genes that harbored differentiated SNPs (diffStat 4 0) had
a higher density of polymorphisms (P< 10�6, randomization
test) which in turn exhibited more equal allele frequencies
(P = 10�12; KS test). This effect was present for nonsynon-
ymous SNPs (P = 1.6� 10�5, randomization test), but not
for synonymous (P = 0.38, randomization test), what may
mean either that highly polymorphic genes are more likely
to be targets of selection or that they are more likely to differ-
entiate by drift because of their effective neutrality.

To explore whether some of the genes with differenti-
ated nonsynonymous SNPs (supplementary table S1,
Supplementary Material online) were somehow associated
with phenotypic differences between selected and control
lines, we investigated their functions using relevant databases,
and the most intriguing cases are described in Discussion.

Overall, these results did not provide evidence that selec-
tion for increased maximum metabolic rate caused allele fre-
quency changes at coding SNPs. The changes in allele
frequencies that we did observe can be explained by the
actions of two other evolutionary forces, namely drift and
purifying selection, that acted in the same way in all lines.

Gene Expression

To determine differences in expression levels between the
selected and control lines, we investigated all expressed
genes with at least ten mapped reads and performed ordi-
nation of the lines using a multidimensional scaling analysis
that was based on estimates of pairwise similarity in expres-
sion levels. In contrast with the SNP results, this analysis
found that the selected lines and control lines clustered
separately for the liver samples; for heart samples clustering
was not significant (liver: P = 0.002; heart: P = 0.384; random-
ization tests; fig. 2A and B). Thus, it appears that similar
changes in gene expression in the most important metabolic
organ, the liver, might have occurred in all selected lines,
distinguishing them from controls.

In the heart samples, 79 genes were differentially expressed
between selected and control lines (52 genes were overex-
pressed and 20 were underexpressed in selected lines; false
discovery rate [FDR] = 0.05; fig. 2C). Many more genes were
differentially expressed in the liver (278 genes at FDR = 0.05;
123 genes were overexpressed and 155 were underexpressed
in selected lines; fig. 2D). We annotated 110 differentially
expressed genes (28 in heart and 82 in liver), all putatively
protein coding (supplementary tables S2 and S3,
Supplementary Material online). As an additional assessment
of these differentially expressed genes we performed t-test on
FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) values and calculated the proportion of
genes with FPKM values nonoverlapping between the
selected and control lines. Sixty-three per cent of coding
genes differentially expressed in liver and 61% in heart
showed statistically significant result of the t-test (P< 0.05)
and 55% and 63% of them, respectively, had nonoverlapping

expression level values. The molecular functions of some of
these 110 genes are discussed below.

Discussion

Differentiation at the Molecular Level

Using replicate selected and control lines derived from a nat-
ural population of a small mammal, we experimentally quan-
tified the responses to artificial selection at the molecular
level. The trait investigated here, maximum metabolic rate
during exercise, likely has a complex genetic basis (Hagberg
et al. 2011; Roth et al. 2012; P�erusse et al. 2013; Wolfarth et al.
2014) and as the genomic basis of evolutionary change in
complex traits is still poorly understood (Rockman 2012),
our results are of interest from a broad evolutionary perspec-
tive. This experiment thus addresses a question of general
evolutionary and physiological relevance by applying the
strict criteria associated with the design of E&R studies (rep-
licates and use of control populations). In doing so, it has
provided insight into the genetic patterns of adaptation
that arise from standing genetic variation in populations of
mammals. Here, we clearly observed that the effects of arti-
ficial selection were visible at both the phenotypic and mo-
lecular levels. However, although the artificial selection
applied in this experiment resulted in reproducible changes
in the expression levels of many genes, it did not cause ap-
preciable changes in allele frequencies at coding SNPs, which
were instead influenced predominately by drift.

The importance and contribution of expression changes
and coding mutations to adaptation has long been a topic of
great interest (King and Wilson 1975; Hoekstra and Coyne
2007; Wray 2007; Stern and Orgogozo 2008; Fraser 2013).
Recent findings in human populations suggest that adapta-
tion in regulatory elements, likely affecting gene expression, is
ten times more frequent than in protein-coding parts of the
genome (Fraser 2013). Similar evidence has been obtained
from diverse taxa: Since the split between marsupials and
placental mammals, many more new regulatory elements
than coding exons have emerged to differentiate the two
groups (Mikkelsen et al. 2007), and in the evolution of
rodents, most adaptive mutations have occurred in regula-
tory elements rather than in protein-coding exons (Halligan
et al. 2013). Our results are consistent with these findings in
showing that, during a relatively short period of selection in
small populations, the pattern of expression of multiple genes
can change rapidly and in a reproducible manner. Our two
main observations—that more than 300 genes were differen-
tially expressed between selected and control lines and that
changes in allele frequencies were caused predominantly by
drift—support the hypothesis that changes in gene expres-
sion, rather than changes in allele frequencies of coding
regions, play a central role in adaptation. Other genetic anal-
yses of rodent selection experiments found hundreds of dif-
ferentially expressed genes by either eQTL (expression
Quantitative Trait Loci) investigations (Kelly et al. 2012,
2014) or by comparing expression profiles between treat-
ments (Bye et al. 2008; Roberts et al. 2013). These observations
suggest that expression analyses may be among the most
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promising strategies to identify the molecular basis of pheno-
typic differences.

The contrast between expression and frequency changes
of coding alleles may be explained by selection acting mostly
on alleles in regulatory elements. However other factors
cannot be ignored here. Gene expression can be thought of
as a first-order phenotype. Because many different SNPs, pos-
sibly located in many different genes may affect expression
level of a particular gene it may be easier to observe the effects
of selection on gene expression levels than on the frequency
changes of individual alleles. Thus significant and reproducible
changes in expression levels may result from the combined
effects of a number of subtle (and not necessary repeatable
among selected lines) allele frequency changes in regulatory
elements. For many genes expression is essentially a polygenic
trait and as such might be less prone to drift. Therefore
random variation between lines in gene expression might
be lower than in SNPs, increasing statistical power to detect
subtle changes. On the other hand, if the artificial selection in
this experiment had resulted in subtle allele frequency
changes in many coding SNPs, then this pattern should
have been detected by the multidimensional scaling analysis:
The selected lines would have formed clusters separated from
the controls. However, we did not observe such clustering for
the allele frequency data; it was only seen in the gene expres-
sion data. This suggests that the changes in gene expression,
but not repeatable changes in coding variants, underlie the
observed response to selection.

Multidimensional scaling and additional analyses showed
that the differences in allele frequencies in coding regions
between selected and control lines were driven mainly by
genetic drift. These results do not necessarily mean that
selection does not affect variation in coding regions; however,
they are not compatible with a scenario in which widespread
positive selection on coding genes shapes the genomic pat-
terns of polymorphism within, and divergence between,
selection regimes. The fact that we did not find SNPs differ-
entiated more than expected under drift effectively rules out
the possibility that any genetic variant of large effect was
repeatedly selected for. Therefore, we suspect that if positive
selection affected the coding sequences in our experiment, it
acted on a limited number of variants that provided a small-
to-moderate fitness advantage. In this respect, our study
contrasts with other selection experiments performed on
vertebrates which showed large genomic regions being fixed
for alternative variants between treatments (Johansson et al.
2010; Chan et al. 2012; Pettersson et al. 2013). This difference
may be a consequence of differences in the genetic architec-
ture of the traits investigated or result from differences in
experimental setup, in particular the origin and genetic
makeup (e.g., presence of linkage disequilibria) of the base
population. However, many previous studies relied on obser-
vations of reduced genetic diversity as evidence for the effects
of selection and, in doing so, may have suffered from the
confounding effects of genetic drift. For example, Johansson
et al. (2010) selected chicken lines for high body mass and

A Liver expression differen�a�on

D Genes expression changes in heart

B Heart expression differen�a�on

C Genes expression changes in liver
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FIG. 2. Effect of selection on expression changes in the bank vole selection experiment. (A, B) Multidimensional scaling plot (MDS) of transcriptome
distances (in terms of the BCV) between selected and control lines of the bank vole experiment. Triangles represent selected lines; circles represent
controls. The MDS plots were drawn using the expression level values of 91,760 liver and 108,656 heart genes. (C, D) Log-fold-change expression versus
log abundance of gene expression in liver and heart samples. Gene expression data are TMM-normalized. Genes that qualified as significantly
differentially expressed (FDR 0.05) are in red.
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interpreted the decrease in heterozygosity as reflecting the
operation of selection. However, the high-body-mass selected
line had an effective population size that was reduced by
around 10% (44.5 vs. 49.3). Our experimental design allowed
us to ascribe reduced polymorphism in the selected lines to
their reduced effective population sizes, and we were able
to show that even such minor differences can significantly
affect polymorphism.

Our study differed from many other E&R studies (espe-
cially these performed on vertebrates) in the nature of the
standing genetic variation available at the onset of the exper-
iment. We directly utilized genetic variation that was segre-
gating in a natural population. This has not been the case in
many other experiments, in which source populations were
created by crossing inbred or isofemale lines (Johansson et al.
2010; Chan et al. 2012; Orozco-Terwengel et al. 2012; Turner
and Miller 2012). As a result, experimental populations may
not have adequately reflected the standing genetic variation
available for positive selection in natural populations. For
example, inbred lines are likely to have been cleaned of
large-effect recessive deleterious mutations but to have
fixed many slightly deleterious ones. When inbred lines are
crossed, slightly deleterious mutations become common, and
the initial allele frequency spectrum is expected to depart
from that observed in nature. In nature, most deleterious
variants are rare and the shape of allele frequency spectrum
depends on effective population size. Here, we inferred that
negative selection is an important force that might shape
allele frequencies, even in populations of small Ne.

However, a small Ne is a limitation inherent to E&R studies
in vertebrates, and because of this, our study had limited
power to detect the effects of selection on SNPs. Pedigree-
based selection simulations demonstrated that, due to the
effect of drift in relatively small experimental populations,
only strongly selected (s ~ 0.2) variants segregating at appre-
ciable frequencies in the base population can be detected
with high probability. Therefore, the effective size of experi-
mental populations has critical consequences for the E&R
approach. Several theoretical studies have examined the
effect of population size on analyses of artificial selection,
and all of them have found that Ne is a crucial factor that
influences the power of such analyses (Baldwin-Brown et al.
2015; Kofler and Schl€otterer 2015; Kessner D, Novembre J,
unpublished data; http://dx.doi.org/10.1101/005892, last ac-
cessed August 15, 2014). Specifically, Baldwin-Brown et al.
(2015) argue that, to localize causative SNPs with at least
80% success, researchers should use a population size of
1,000 diploid individuals. This is obviously not feasible for
most laboratory experiments involving vertebrates, and there-
fore only variants with large effects can be detected with high
probability (Baldwin-Brown et al. 2015). The same situation is
however observed in nature—many vertebrate populations
are small, having effective population sizes comparable to
those reported here, which makes distinguishing effects of
drift and selection a challenging task (Palstra and Ruzzante
2008). Additionally, population recombination rate is low in
small populations, which increases the rate of false positives
because drift affects entire long haplotypes and leads to

correlated allele frequency changes in multiple SNPs. We
partially controlled for the effect of linkage by sampling one
SNP per gene. However, this problem needs to be considered
in future E&R studies.

An alternative explanation for the lack of considerable
changes in allele frequencies is that adaptation is due to
different variants in different lines. Repeatability of adaptation
is however surprisingly high on the gene level both in exper-
imental evolution experiments and in natural populations
(Conte et al. 2012; Tenaillon et al. 2012; Martin and
Orgogozo 2013). Because of that observation and the fact
that initial standing genetic variation was similar in all selected
lines derived from a single base population, many SNPs ini-
tially in moderate frequencies should be repetitively selected.
Because the number of repetitively selected coding SNPs was
probably modest, and the power to detect them was limited,
we attempted to identify potential candidates by exploring
the molecular functions of differentiated genes. We also
carried out a similar analysis on genes with significantly dif-
ferent expression levels. This strategy is often used in exper-
imental selection surveys (Bye et al. 2008; Kelly et al. 2012,
2014; Roberts et al. 2013) allowing to pinpoint the most
promising candidates for future investigations. Below, we
very briefly discuss the molecular processes associated with
these plausible candidates.

Molecular Function of Plausible Candidates

To assess which biological pathways have possibly changed in
response to selection, we investigated the genes that had
been identified as having nonoverlapping allele frequencies
between selected and control lines (despite the overall lack of
support for a role of selection in allele frequency changes,
some variants may nevertheless be weakly selected for) and
those that were differentially expressed in at least one organ.
We refer to these genes as “plausible candidates” and list
them in supplementary tables S1–S3, Supplementary
Material online. None GO (Gene Ontology) category was
significantly overrepresented relative to all GO categories
(FDR< 0.05). We argue, though, that some of these plausible
candidates are more likely than others to explain some phe-
notypic changes. We narrowed down the list of candidates
based on their functions and present the most interesting
genes below.

The stromal interaction molecule 1 (STIM1) gene showed
highest differences in allele frequency between the selected
and control lines, that is, harbored nonsynonymous SNPs
with the highest diffStat values. STIM1 senses exhaustion of
Ca2+ in the endoplasmic reticulum and activates an ion chan-
nel in the plasma membrane, causing continuous influx of the
extracellular Ca2+ (Kurosaki and Baba 2010). Heterozygous
mutations in human STIM1 cause tubular aggregate myopa-
thy (Bohm et al. 2013) and sotormorken syndrome (Misceo
et al. 2014). In tubular aggregate myopathy all patients were
characterized by mild and slowly progressive lower limb
muscle weakness causing frequent falls and running difficul-
ties (Bohm et al. 2013), which suggests that mutations in
STIM1 may play an important role in swimming performance.
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Another gene of great interest is that of glycogen phosphor-
ylase (PYGL). The physiological role of this liver phosphorylase
is to ensure constant supply of glucose for extrahepatic tissues
by catalyzing the rate-limiting step in glycogenolysis
(Newgard et al. 1989; Bollen et al. 1998). Nonsynonymous
mutations in human PYGL cause glycogen storage disease
type VI. In substantial number of patients with such disease
mild hypotonia, delayed motor development and muscle
weakness and cramps were observed (Beauchamp et al.
2007). Interestingly, another nonsynonymous SNP that
showed significant differences between selected and control
lines was located in the gene that encodes the glycogen-deb-
ranching enzyme AGL, which acts together with PYGL to
mobilize glucose from glycogen reserves. Mutations in
human AGL cause Glycogen Storage Disease type III affecting
calves and peroneal muscles (Lucchiari et al. 2007).

The gene characterized by the highest number of differen-
tiated nonsynonymous SNPs was MYO18B, encoding uncon-
ventional myosin XVIIIb. Previous studies have demonstrated
the important role of this gene in myocardic structures
(Ajima et al. 2008), as well as its contribution to cognitive
phenotypes (Purcell et al. 2009; Ludwig et al. 2013).

Another interesting gene is insulin-like growth factor
2 (IGF2) its expression increases in response to endurance
training and extent of this change differs between humans
with highest and lowest improvement in aerobic capacity
(Keller et al. 2011). Next gene with an interesting function
is the one that encodes fibroblast growth factor 21, which
stimulates glucose uptake in adipocytes and plays a critical
role in the regulation of lipid homeostasis (Badman et al.
2007). We also identified changes in other genes involved in
lipid metabolism (e.g., ABCG1, CYP17A, APOB, LIPA, APOA1,
APOA2, CYP4A14), the formation and proper functioning of
the heart (e.g., XIRP2, KDM4A, JPH2), and stress responses
(e.g., IRGM, DELE, PARP, HSP70, HSP105). All these genes
may be involved in response to selection for aerobic
performance.

In liver tissue, we found significant differences in expression
of the gene that encodes retinoblastoma-like protein-2
(RBL2). RBL2 acts as a transcriptional repressor of the en-
zymes DNMT3A and DNMT3B, which catalyze the transfer
of methyl groups to specific CpG structures in DNA, a process
called DNA methylation (Benetti et al. 2008). Also on the list
of differentially expressed liver genes are the genes encoding
heterogeneous nuclear ribonucleoprotein H2 (HNRPH2),
which plays an important role in pre-mRNA processing
(Alkan et al. 2006), and methyl-CpG-binding domain protein
4 (MBD4), which takes part in the active demethylation pro-
cess (Roloff et al. 2003). Additionally, one of the genes whose
allele frequencies differed the most between selected and
control lines was that coding for lysine-specific demethylase
4A (KDM4A), which plays a central role in modifying the
“histone code” (Tan et al. 2011). Taken together, these obser-
vations suggest that genes associated with epigenetic changes
might represent important targets of selection.

One of the most significant changes in expression level was
observed for the gene that encodes aphrodisin—a protein
that transports pheromones that stimulate copulatory

behavior (Briand et al. 2004; Stopkov�a et al. 2010). Genes
coding for aphrodisin-like proteins in bank voles may be
used in chemical communication among individuals and
thus may play an important role in aggression, dominance,
and mate choice (Stopkov�a et al. 2010). Changes in expression
of this gene are interesting in the context of differences in
reproductive success between the selected and control lines.
Already in previous generations of the selection experiment
we observed that voles from the selected lines produced
litters sooner after the mating (Koteja et al. 2010). Also, in
generation 12 and 13 (parents and siblings, respectively, of
the voles used in transcriptome analysis), the proportion
of mated pairs that produced offspring was significantly
higher in the selected than in the control lines (generation
12—selected: 93.2%, control: 70.1%, P = 0.011; generation
13—selected: 92.9%, control: 68.2%, P = 0.010; GLIMMIX pro-
cedure in SAS 9.3). It is tempting to speculate that changes in
the expression of aphrodisin may have been the underlying
mechanism.

Conclusions
We characterized, through transcriptome sequencing, the
response to selection for increased aerobic metabolism in
lines derived from a natural population of the bank vole.
We showed that the initial response to selection occurs
mainly through changes in gene expression. After applying
a rigorous control for the effect of drift, no repeatable changes
in allele frequencies at coding SNPs could be unambiguously
attributed to directional selection. These results differ from a
handful of previous analyses of selection experiments in birds
and mammals, in which signals of multiple selective sweeps
were detected by resequencing of genomes. Because our se-
lection lines were derived from a natural population, the
amount and spectrum of variation available for selection
probably closely approximates these typically found in pop-
ulations of small mammals. Therefore our results are relevant
to the understanding of the molecular basis of complex ad-
aptations occurring in vertebrate populations. By combining
transcriptome analyses, information about gene functions,
and knowledge about selected traits and phenotypes, we
identified genes and pathways that could be the targets of
selection for increased aerobic metabolism. To further inves-
tigate the patterns uncovered here, novel methods that com-
bine knowledge from both population genetics and
molecular biology should be developed and exploited in
order to effectively characterize the candidate genes that
were identified during this experiment.

Materials and Methods

Selection Experiment

This study was performed using individuals from the 13th
generation of a laboratory colony of bank voles (Myodes
[=Clethrionomys] glareolus) that was subjected to selection
for improved aerobic metabolism. The rationale for the selec-
tion experiment as well as detailed breeding and selection
protocols are described elsewhere (Sadowska et al. 2008;
supplementary materials S1.1 and S1.2, Supplementary
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Material online). Briefly, the colony was founded using
approximately 320 voles captured in 2000 and 2001 in the
Niepolomice Forest in southern Poland. For 6–7 generations,
the animals were bred randomly, and the colony was used for
quantitative genetic analyses of metabolic rates (Sadowska
et al. 2005). In 2004, a multidirectional selection experiment
was established. In the A-lines analyzed here, the selection
criterion was the maximum mass-independent (residual from
regression) 1-min rate of oxygen consumption achieved
during 18 min of swimming. The swim test was conducted
at 38�C so that no thermoregulatory burden was imposed,
and animals were tested when they were around 75–85 days
old (see supplementary materials S1.1 and S1.2,
Supplementary Material online, for details of the protocol
and results of the selection).

Estimating Inbreeding Effective Population Size

To explore breeding differences among lines, individual in-
breeding coefficients were calculated for each line using the
R package “pedigree.” Changes in inbreeding over time were
calculated as

�Fi ¼
Fi � Fi�1

1� Fi�1
;

where Fi is the mean inbreeding coefficient in generation i
(Falconer and Mackay 1996). The effective population size Ne

was calculated for each line according to the formula:

Ne ¼
1

2x�F
;

where �F is the mean change in inbreeding over time.

Sampling, RNA Extraction, and Sequencing

For the transcriptome analysis, five males and five females of
75–80 days in age were sampled from each line; each individ-
ual came from a different family. These individuals had not
been previously used in the swimming trials or for any other
specific measurements (except routine measurements of
body mass). Voles were euthanized by being placed one by
one in a jar containing isoflurane (Aerane) fumes; this process
took place between 8.00 AM and 2.00 PM. The animals were
then weighed, and a small part of their left liver lobes and
hearts were immediately excised and placed in RNAlater
(Sigma). Samples were stored overnight at 4�C and then
frozen at �20�C.

Total RNA was extracted using RNAzol (Molecular
Research Center) in accordance with the manufacturer’s in-
structions. RNA concentration and quality were measured
using Nanodrop and Agilent 2100 Bioanalyzer, respectively.
All samples had an RNA Integrity Number higher than 7.0 and
were thus suitable for poly-A selection and cDNA library
preparation.

For each organ, we prepared one pooled sample per line—
using equal amounts of total RNA from each individual—for
a total of 16 samples. Residual DNA was removed from
pooled samples using a DNA-free Kit (Ambion). RNA quality

and concentration following the DNAse treatment were as-
sessed as described above.

Poly-A selection, reverse transcription, and the preparation
of barcoded cDNA libraries with the TrueSeq RNA kit were
performed by the Georgia Genomics Facility, USA. Liver sam-
ples from one control line (C3) were pair-end (2� 100 bp)
sequenced on an Illumina HiSeq 2000 and used for reference
transcriptome construction (Konczal et al. 2014). For the
remaining 15 pools, single-end (1� 100 bp) sequencing was
performed. The reads were deposited in Sequence Read
Archive (Bioproject PRJNA267038).

Reference Transcriptome Reconstruction and
Annotation

We first trimmed low-quality reads using DynamicTrim,
removed adaptors with Cutadapt, and removed reads shorter
than 20 bp with LengthSort (Cox et al. 2010; Grabherr et al.
2011; Martin 2011). As references, we used a previously as-
sembled liver transcriptome (Konczal et al. 2014) and the
heart reference transcriptome generated by Kaczy�nska,
Konczal, Babik and Niedzialkowska (unpublished data),
which had been assembled for other purposes. The transcrip-
tomes were processed by merging transcripts that were likely
derived from the same genomic locations. This produced
transcriptome-based gene models (TGMs), which we refer
to here as “genes” (Stuglik et al. 2014).

We did not assemble one transcriptome from pooled
reads of two organs to avoid the problem of potential redun-
dancy of the reference transcriptome. Transcriptome com-
plexity negatively affects de novo assembly and TGMs
reconstruction (Vijay et al. 2013), and it is known that most
alternative splicing occurs between organs (Wang et al. 2008).
Redundancy of the reference transcriptome has serious im-
plications for SNP calling, because reads mapping equally well
to multiple locations are filtered out during this procedure.
Because we assembled transcriptomes of each organ sepa-
rately, this problem is reduced to within-organ splice variant
variation and even if it occurs for one transcriptome, SNPs
may be still identified using reference transcriptome from the
other organ (see below).

TGMs were annotated using Trinotate software. Trinotate
makes use of a number of methods for functional annotation
(e.g., homology search to Swissprot database, protein domain
identification, protein signal prediction) of likely coding
regions (likely CDSs). Likely CDSs were identified using a pipe-
line implemented in Trinity, but this approach did not suc-
cessfully annotate all of them. Nonannotated genes represent
either errors, fast evolving genes, or genes whose homologs
are not present in the Swissprot database.

Mapping and Identification of SNPs

Filtered reads were mapped to the reference transcriptomes
using Bowtie2 (Langmead and Salzberg 2012). For liver
samples of line C3, we subsampled reads to obtain a compa-
rable number of single-end sequences. Reads mapped into
multiple locations were removed from analyses. We mapped
all reads from both organs together to the liver and heart
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transcriptomes to increase accuracy of allele frequency
estimation.

SNP calling was performed in two steps. First, we identified
SNPs with samtools (mpileup with options: -Q 10, -E), which
is dedicated to diploid genomes (Li et al. 2009). SNPs that
contained more than two variants in samtools output were
discarded. In the second step, we applied PoPoolation2
(Kofler et al. 2011) to filter data and estimate allele frequen-
cies. Only SNPs with a minimum of 10� coverage in each
sample and a minimum of three reads that supported minor
allele were considered. Additional to multiallelic SNPs re-
moval, two procedures were applied to identify and exclude
similar paralogs that had been assembled into single genes: 1)
We removed most polymorphic genes (more than five SNPs
per 100 bp using a minimum of 10� coverage) and 2)
we discarded all genes that contained SNPs with an
excess of observed heterozygotes or had BLASTN hits with
E value< 10�150 to such genes. This procedure was based on
those developed for the individually sequenced liver tran-
scriptomes of 10 voles (Konczal et al. 2014) and the heart
transcriptomes of 20 voles (Kaczy�nska et al., unpublished
data)—these studies excluded SNPs for which more than 8/
10 or 14/20 samples, respectively, were heterozygotes. Using
custom python scripts, SNPs were classified as being synon-
ymous, nonsynonymous, UTRs, or localized in putative
nonprotein-coding genes.

The above procedure was performed for both liver and
heart transcriptomes and yielded highly overlapping sets of
SNPs. The differences resulted from differences in reference
transcriptomes (lack of an SNP in one transcriptome may be
caused by incompletely assembled or nonassembled genes or
by splice variants which were not collapsed into a single gene
model). To remove the redundancy in the SNP data set, we
preformed the following procedure. First, we clustered liver
and heart SNPs-containing genes using reciprocal BLAST
searches (BLASTN hits with E value< 10�100 and 4 99%
identity). Genes which did not form clusters were apparently
expressed in one organ only and were retained (liver: 5,786
genes, heart: 1,759 genes). Genes with significant hits in the
other transcriptome were reduced using the criterion of com-
pleteness. From clusters with one-to-one relation (containing
a single sequence from each transcriptome; 6,082 clusters)
we retained the longer one. The relation one to many (939
clusters) was mainly caused by fragmentation of the gene in
one of the assemblies; therefore, we retained SNPs from the
transcriptome with the single assembled sequence. For clus-
ters containing greater than one sequence from liver and
greater than one from heart (many to many, 200 clusters),
we included in analyses sequences from this transcriptome in
which the total length of sequences was larger. SNPs identi-
fied in thus selected genes were used for all analyses. For genes
that contained at least one SNP, FST was calculated using
PoPoolation2. FST was calculated for each SNP using the for-
mula FST = (�T� �W)/�T. Mean FST values between each pair
of lines were calculated, and this matrix of pairwise FST was
used to test 1) whether the extent of variation among
lines within treatments differed between selected and control
lines and 2) whether selected and control lines cluster

separately. Multivariate homogeneity of group dispersion
was tested using betadisper function from vegan package,
(Oksanen et al. 2013) followed by an ANOVA. To test for
separate clustering of selected and control lines, we calculated
the ratio of between treatment to within treatment variance
using adonis function (vegan package) and assessed its statis-
tical significance through 1,000 randomizations. Randomized
matrices of mean FST were obtained by shuffling pairwise FST

values for each gene independently. The original mean pair-
wise FST matrix was visualized using nonmetric multidimen-
sional scaling.

Simulations of Allele Frequency Distribution under
Drift and Positive Selection

To obtain the allele frequency distributions that would be
expected under drift, we performed forward drift simulations
on known pedigrees. Simulations were performed separately
for allele frequency spectra derived from all, synonymous and
nonsynonymous SNPs.

The simulations were divided into four parts and were
repeated 10 million times (steps 2–4):

1. Estimation of the initial allele frequency distribution. As
we did not know the allele frequencies in the ancestral
population, we had to estimate them using data from the
control lines. For each SNP, we calculated the mean allele
frequency from the four control lines. If control lines
diverge mainly due to drift (a reasonable assumption
for most polymorphisms), such averages are unbiased
estimates of allele frequencies in the ancestral population,
which may then be used to reconstruct the allele fre-
quency spectrum in the ancestral population.
2. Simulation of the genotypes of “generation 0” individuals.
We simulated the genotype of each individual in the
ancestral population by randomly choosing one initial
allele frequency (p0) from the set of frequencies estimated
in step 1. Then, for each individual, we sampled from a
binomial distribution with n = 2 and P = p0 (n, number of
draws; P, probability of success), thus obtaining the
number of allele copies (0, 1, 2) for each individual.
3. Simulation of the effect of drift on known pedigrees.
Based on known pedigrees, we simulated genotypes for
each individual by randomly choosing one chromosome
from each of the parents. We then obtained genotypes
for ten individuals (that were selected for sequencing for
each line) and calculated allele frequencies.
4. Simulation of pooling and sequencing error. Pooling and
sequencing cause inaccuracy in allele frequency estima-
tion. Therefore, we decided to add relevant variation to
the simulated allele frequencies using the relative errors of
allele frequency estimation that had been previously
calculated (Konczal et al. 2014). For a given MAF class,
a gamma function was fitted to the distribution of
experimentally obtained relative errors. Then, one value
of estimation error was randomly chosen from the fitted
gamma distribution and incorporated into the simulation
results.

1470

Konczal et al. . doi:10.1093/molbev/msv038 MBE
 at U

niw
ersytet Jagiellonsky w

 K
rakow

ie on June 3, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/


To assess power to detect selected variant given its selec-
tive advantage and initial frequency, we used the approach
similar as in drift simulations. Several initial allele frequencies
(f = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9) and four different values of
selection advantage (s = 0, 0.05, 0.1, 0.2) were used. In the
course of pedigree based simulations, in selectively bred
lines advantageous allele was passed from heterozygote
parents to offspring with higher probability (0.5 + 1=2 s)
than the alternative variant (0.5� 1=2 s). For each combina-
tion of f and s, we performed 100,000 iterations and recorded
the fraction iterations with diffStat 4 0.

Scripts used for simulations are available at http://www.
molecol.eko.uj.edu.pl (last accessed March 9, 2014).

SNP Analyses, Polymorphism, and Divergence
between Lines/Selection Regimes

To study the effect of differences in Ne between lines on the
amount of genetic variation, we examined the allele fre-
quency spectra. Specifically we calculated for each line the
number of such SNPs which were polymorphic in the entire
data set but showed little or no variation (MAF< 0.05) within
the line. We used an ANCOVA in which Ne was a covariate
and treatment (control vs. selected) was a fixed effect; the
interaction between the two was included in order to check
the assumption that the slopes were homogeneous between
treatments. The interaction was not significant (F(1, 4) = 0.84,
P = 0.41). As a consequence, we used a simple model without
interactions to study the general effect of Ne and treatment
on allele frequency spectra.

To study differentiation between the selected and control
lines, we investigated repeatable changes in allele frequencies.
SNPs with frequencies that were either always higher or
always lower in selected lines as compared with control
lines (nonoverlapping allele frequencies) were considered to
be potential targets of selection (plausible candidates). For
each such site, we calculated the diffStat statistic, which is
the smallest difference in allele frequency between selected
and control lines (Turner et al. 2011). The distribution of the
number of unlinked candidate SNPs was estimated by sam-
pling one SNP per gene 1,000 times. We then sampled the
same number of SNPs (the number of genes with at least one
SNP) from simulated pedigrees 600 times; in these simula-
tions, drift was the only evolutionary force in operation. We
subsequently compared the two sets of results. The difference
between these two distributions should reveal the genome-
wide effects of selection. These analyses were performed on
the set of all SNPs, as well as separately for each class of SNPs
(synonymous, nonsynonymous, UTR, noncoding).

The biological functions and molecular processes
associated with the differentiated genes were studied using
custom scripts and Gowinda software (Kofler and Schl€otterer
2012).

Estimation and Comparison of Gene Expression Levels

To identify differentially expressed genes, we mapped reads
onto reference transcriptomes with bowtie and used the
EdgeR Bioconductor and RSEM packages (Robinson et al.

2010). The matrix of expected counts over all samples was
used for EdgeR analyses. Only genes for which the sum of
expected counts over all samples was higher than 10 were
counted. Using the standard EdgeR procedure, we normalized
counts for library size and RNA composition. We performed
multidimensional scaling (biological coefficient of variation
[BCV] method, EdgeR package) over all genes to analyze gen-
eral expression patterns within tissues. We also estimated
dispersion and calculated exact tests for genes that were dif-
ferentially expressed between control and selected lines. The
FDR was calculated as per Benjamini and Hochberg (1995).

The GO terms associated with the differentially expressed
genes were investigated with GOrilla software (Eden et al.
2009).

To statistically test for separate clustering of transcriptional
profiles of selected and control lines, we developed a proce-
dure analogous to that used for the FST matrix. We used table
of expression values (FPKM, TMM normalized) which in-
cluded only transcripts with the total FPKM 4 1. For this
table, we calculated distance matrix (dist() function) and
the ratio of between treatment to within treatment variance
(adonis function, vegan package). The statistical significance
of this ratio was assessed through 1,000 randomizations.
Randomized matrices of mean gene expression distances
were obtained by shuffling expression values of individual
gene between lines. Differences between lines in genome-
wide transcriptional profiles were visualized with multidimen-
sional scaling (plotMDS function, edgeR).

Supplementary Material
Supplementary materials S1 and S2, figures S1.1, S2.1–2.4, and
tables S1–S3 are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

This work was funded by the Polish Ministry of Science
(N N303 816740 to P.K.) and Jagiellonian University (DS 757
and DS 762). The authors are grateful to the many technicians
and students, especially to K. Baliga-Klimczyk, K. Chrzascik, G.
Dheyongera, A. Rudolf, and C. Stawski, for their contribution
to animal maintenance, selection protocols and help with
dissections.

References
Ajima R, Akazawa H, Kodama M, Takeshita F, Otsuka A, Kohno T,

Komuro I, Ochiya T, Yokota J. 2008. Deficiency of Myo18B in
mice results in embryonic lethality with cardiac myofibrillar aberra-
tions. Genes Cells 13:987–999.

Alkan S, Martincic K, Milcarek C. 2006. The hnRNPs F and H2 bind to
similar sequences to influence gene expression. Biochem J. 393:
361–371.

Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E.
2007. Hepatic fibroblast growth factor 21 is regulated by PPAR� and
is a key mediator of hepatic lipid metabolism in ketotic states.
Cell Metab. 5:426–437.

Baldwin-Brown JG, Long AD, Thornton KR. 2015. The power to detect
quantitative trait loci using resequenced, experimentally evolved
populations of diploid, sexual organisms. Mol Biol Evol.
31(4):1040–1055.

1471

Molecular Response to Selection for Aerobic Performance . doi:10.1093/molbev/msv038 MBE
 at U

niw
ersytet Jagiellonsky w

 K
rakow

ie on June 3, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://www.molecol.eko.uj.edu.pl
http://www.molecol.eko.uj.edu.pl
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv038/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv038/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv038/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv038/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv038/-/DC1
http://www.mbe.oxfordjournals.org/
http://mbe.oxfordjournals.org/


Barrett RDH, Hoekstra HE. 2011. Molecular spandrels: tests of adapta-
tion at the genetic level. Nat Rev Genet. 12:767–780.

Barrett RDH, Schluter D. 2008. Adaptation from standing genetic vari-
ation. Trends Ecol Evol. 23:38–44.

Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim
JF. 2009. Genome evolution and adaptation in a long-term experi-
ment with Escherichia coli. Nature 461:1243–1247.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society. Series B (Methodological). 289–300.

Beauchamp NJ, Taybert J, Champion MP, Layet V, Heinz-Erian P, Dalton
A, Tanner MS, Pronicka E, Sharrard MJ. 2007. High frequency of
missense mutations in glycogen storage disease type VI. J Inherit
Metab Dis. 30(5):722–734.

Benetti R, Gonzalo S, Jaco I, Mu~noz P, Gonzalez S, Schoeftner S,
Murchison E, Andl T, Chen T, Klatt P. 2008. A mammalian
microRNA cluster controls DNA methylation and telomere recom-
bination via Rbl2-dependent regulation of DNA methyltransferases.
Nat Struct Mol Biol. 15:268–279.

Bohm J, Chevessier F, Maues De Paula A, Koch C, Attarian S, Feger C,
Hantai D, Laforet P, Ghorab K, Vallat J.-M, et al. 2013. Constitutive
activation of the calcium sensor STIM1 causes tubular-aggregate
myopathy. Am J Hum Genet. 92:271–278.

Bollen M, Keppens S, Stalmans W. 1998. Specific features of glycogen
metabolism in the liver. Biochem J. 336:19–31.

Briand L, Trotier D, Pernollet J-C. 2004. Aphrodisin, an aphrodisiac
lipocalin secreted in hamster vaginal secretions. Peptides 25:
1545–1552.

Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD.
2010. Genome-wide analysis of a long-term evolution experiment
with Drosophila. Nature 467:587–U111.

Butlin R, Debelle A, Kerth C, Snook RR, Beukeboom LW, Castillo Cajas
RF, Diao W, Maan ME, Paolucci S, Weissing FJ, et al. 2012. What do
we need to know about speciation. Trends Ecol Evol. 27:27–39.

Bye A, Langaas M, Høydal MA, Kemi OJ, Heinrich G, Koch LG, Britton SL,
Najjar SM, Ellingsen.Ø, Wisløff U. 2008. Aerobic capacity-depen-
dent differences in cardiac gene expression. Physiol Genomics. 33:
100–109.

Chan YF, Jones FC, McConnell E, Bryk J, B€unger L, Tautz D. 2012. Parallel
selection mapping using artificially selected mice reveals body
weight control loci. Curr Biol. 22:794–800.

Chrzascik KM, Sadowska ET, Rudolf A, Koteja P. 2014. Learning
ability in bank voles selected for high aerobic metabolism, preda-
tory behaviour and herbivorous capability. Physiol Behav. 135:
143–151.

Conte GL, Arnegard ME, Peichel CL, Schluter D. 2012. The probability of
genetic parallelism and convergence in natural populations.
Proceedings of the Royal Society B: Biological Sciences 279(1749):
5039–5047.

Cox MP, Peterson DA, Biggs PJ. 2010. SolexaQA: at-a-glance quality
assessment of Illumina second-generation sequencing data. BMC
Bioinformatics 11:485.

Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. 2009. GOrilla: a tool for
discovery and visualization of enriched GO terms in ranked gene
lists. BMC Bioinformatics 10:48.

Falconer DS, Mackay TFC 1996. Introduction to quantitative genetics.
Harlow (United Kingdom): Addison Wesley Longman.

Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek
AM. 2011. A map of local adaptation in Arabidopsis thaliana. Science
334:86–89.

Fraser HB. 2013. Gene expression drives local adaptation in humans.
Genome Res. 23:1089–1096.

Garland T Jr, Rose MR, editors. 2009. Experimental evolution: concepts,
methods, and applications of selection experiments. Berkeley (CA):
University of California Press.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I,
Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. 2011. Full-
length transcriptome assembly from RNA-Seq data without a ref-
erence genome. Nat Biotechnol. 29:644–652.

Hagberg JM, Rankinen T, Loos RJF, Pirusse L, Roth SM, Wolfarth B,
Bouchard C. 2011. Advances in exercise, fitness, and performance
genomics in 2010. Med Sci Sports Exerc. 43:743–752.

Halligan DL, Kousathanas A, Ness RW, Harr B, E€ory L, Keane TM, Adams
DJ, Keightley PD. 2013. Contributions of protein-coding and regula-
tory change to adaptive molecular evolution in murid rodents.
PLoS Genet. 9:e1003995.

Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce
AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, et al. 2006.
Comparative genome sequencing of Escherichia coli allows observa-
tion of bacterial evolution on a laboratory timescale. Nat Genet. 38:
1406–1412.

Hoekstra HE, Coyne JA. 2007. The locus of evolution: evo devo and the
genetics of adaptation. Evolution 61:995–1016.

Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH, Ayroles JF,
Duncan L, Jordan KW, Lawrence F, Magwire MM, et al. 2012.
Epistasis dominates the genetic architecture of Drosophila quanti-
tative traits. Proc Natl Acad Sci U S A. 109:15553–15559.

Johansson AM, Pettersson ME, Siegel PB, Carlborg. €O. 2010. Genome-
wide effects of long-term divergent selection. PLoS Genet. 6:
e1001188.

Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J,
Swofford R, Pirun M, Zody MC, White S, et al. 2012. The genomic
basis of adaptive evolution in threespine sticklebacks. Nature 484:
55–61.

Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. 2012.
Experimental evolution. Trends Ecol Evol. 27:547–560.

Keller P, Vollaard NB, Gustafsson T, Gallagher IJ, Sundberg CJ, Rankinen
T, Britton SL, Bouchard C, Koch LG, Timmons JA. 2011. A transcrip-
tional map of the impact of endurance exercise training on skeletal
muscle phenotype. J Appl Physiol. 110(1):46–59.

Kelly SA, Nehrenberg DL, Hua K, Garland T, Pomp D. 2012. Functional
genomic architecture of predisposition to voluntary exercise in
mice: expression QTL in the brain. Genetics 181((2):643–654.

Kelly SA, Nehrenberg DL, Hua K, Garland T, Pomp D. 2014. Quantitative
genomics of voluntary exercise in mice: transcriptional analysis and
mapping of expression QTL in muscle. Physiol Genomics.
46(16):593–601.

King M-C, Wilson AC. 1975. Evolution at two levels in humans and
chimpanzees. Science 188:107–116.

Kofler R, Pandey RV, Schl€otterer C. 2011. PoPoolation2: identifying dif-
ferentiation between populations using sequencing of pooled DNA
samples (Pool-Seq). Bioinformatics 27:3435–3436.

Kofler R, Schl€otterer C. 2012. Gowinda: unbiased analysis of gene set
enrichment for genome-wide association studies. Bioinformatics 28:
2084–2085.

Kofler R, Schl€otterer C. 2015. A guide for the design of evolve and
resequencing studies. Mol Biol Evol. 31(2):474–483.

Konczal M, Koteja P, Stuglik MT, Radwan J, Babik W. 2014. Accuracy of
allele frequency estimation using pooled RNA-Seq. Mol Ecol Resour.
14:381–392.

Koteja P, Chrzascik KM, Sadowska ET, Oldakowski L. 2010. Correlated
responses to a multi-directional selection in bank voles (Myodes
glareolus): reproductive parameters. Annual Main Meeting of the
Society for Experimental Biology, Prague, June 30–July 3 Programme
and Abstract Book: 98.

Kurosaki T, Baba Y. 2010. Ca2+ signaling and STIM1. Prog Biophys Mol
Biol. 103(1):51–58.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie
2. Nat Methods. 9:357–359.

Le Corre V, Kremer A. 2012. The genetic differentiation at
quantitative trait loci under local adaptation. Mol Ecol.
21(7):1548–1566.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format
and SAMtools. Bioinformatics 25:2078–2079.

Lucchiari S, Santoro D, Pagliarani S, Comi GP. 2007. Clinical, biochemical
and genetic features of glycogen debranching enzyme deficiency.
Acta Myol. 26(1):72.

1472

Konczal et al. . doi:10.1093/molbev/msv038 MBE
 at U

niw
ersytet Jagiellonsky w

 K
rakow

ie on June 3, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/


Ludwig K, S€amann P, Alexander M, Becker J, Bruder J, Moll K, Spieler D,
Czisch M, Warnke A, Docherty S. 2013. A common variant in
Myosin-18B contributes to mathematical abilities in children with
dyslexia and intraparietal sulcus variability in adults. Transl
Psychiatry. 3:e229.

Malarkey DE, Johnson K, Ryan L, Boorman G, Maronpot RR. 2005. New
insights into functional aspects of liver morphology. Toxicol Pathol.
33:27–34.

Martin M. 2011. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet J. 17:10–12.

Martin A, Orgogozo V. 2013. The loci of repeated evolution: a catalog of
genetic hotspots of phenotypic variation. Evolution
67(5):1235–1250.

Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S,
Garber M, Gentles AJ, Goodstadt L, Heger A. 2007. Genome of the
marsupial Monodelphis domestica reveals innovation in non-coding
sequences. Nature 447:167–177.

Misceo D, Holmgren A, Louch WE, Holme PA, Mizobuchi M, Morales RJ,
De Paula AM, Stray-Pedersen A, Lyle R, Dalhus B, et al. 2014.
A dominant STIM1 mutation causes Stormorken syndrome. Hum
Mutat. 35:556–564.

Nespolo RF, Bacigalupe LD, Figueroa CC, Koteja P, Opazo JC. 2011. Using
new tools to solve an old problem: the evolution of endothermy in
vertebrates. Trends Ecol Evol. 26:414–423.

Newgard CB, Hwang PK, Fletterick RJ. 1989. The family of glycogen
phosphorylases: structure and function. Crit Rev Biochem Mol Biol.
24:69–99.

Ohta T. 1982. Linkage disequilibrium due to random genetic drift in
finite subdivided populations. Proceedings of the National Academy
of Sciences 79(6):1940–1944.

Oksanen JF, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB,
Simpson GL, Solymos P, Stevens MHH, Wagner H. 2013. vegan:
Community Ecology Package. R package version 2.0-10. Available
from: http://CRAN.R-project.org/package=vegan .

Orozco-Terwengel P, Kapun M, Nolte V, Kofler R, Flatt T, Schl~atterer C.
2012. Adaptation of Drosophila to a novel laboratory environment
reveals temporally heterogeneous trajectories of selected alleles. Mol
Ecol. 21:4931–4941.

Palstra FP, Ruzzante DE. 2008. Genetic estimates of contemporary ef-
fective population size: what can they tell us about the importance
of genetic stochasticity for wild population persistence? Mol Ecol. 17:
3428–3447.

P�erusse L, Rankinen T, Hagberg JM, Loos RJF, Roth SM, Sarzynski MA,
Wolfarth B, Bouchard C. 2013. Advances in exercise, fitness, and
performance genomics in 2012. Med Sci Sports Exerc. 45:824–831.

Pettersson ME, Johansson AM, Siegel PB, Carlborg. €O. 2013. Dynamics of
adaptive alleles in divergently selected body weight lines of chickens.
G3 3:2305–2312.

Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF,
Sklar P, Ruderfer DM, McQuillin A, Morris DW. 2009. Common
polygenic variation contributes to risk of schizophrenia and bipolar
disorder. Nature 460:748–752.

Roberts MD, Brown JD, Oberle LP, Heese AJ, Toedebusch RG, Wells KD,
Cruthirds CL, Knouse JA, Ferreira JA, Childs TE, et al. 2013.
Phenotypic and molecular differences between rats selectively
bred to voluntarily run high vs. low nightly distances. Am J Physiol
Regul Integr Comp Physiol. 304(11):R1024–R1035.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression
data. Bioinformatics (Oxford, England) 26:139–140.

Rockman MV. 2012. The QTN program and the alleles that matter for
evolution: all that’s gold does not glitter. Evolution 66:1–17.

Roloff TC, Ropers HH, Nuber UA. 2003. Comparative study of methyl-
CpG-binding domain proteins. BMC Genomics 4:1.

Roth SM, Rankinen T, Hagberg JM, Loos RJF, P�erusse L, Sarzynski MA,
Wolfarth B, Bouchard C. 2012. Advances in exercise, fitness, and
performance genomics in 2011. Med Sci Sports Exerc. 44:809–817.

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X,
Byrne EH, McCarroll SA, Gaudet R. 2007. Genome-wide detection

and characterization of positive selection in human populations.
Nature 449:913–918.

Sadowska ET, Baliga-Klimczyk K, Chrzascik KM, Koteja P. 2008.
Laboratory model of adaptive radiation: a selection experiment in
the bank vole. Physiol Biochem Zool. 81:627–640.

Sadowska ET, Labocha MK, Baliga K, Stanisz A, Wr�oblewska AK, Jagusiak
W, Koteja P. 2005. Genetic correlations between basal and maxi-
mum metabolic rates in a wild rodent: consequences for evolution
of endothermy. Evolution 59:672–681.

Schl€otterer C, Kofler R, Versace E, Tobler R, Franssen SU. 2014.
Combining experimental evolution with next-generation sequenc-
ing: a powerful tool to study adaptation from standing genetic
variation. Heredity doi: 10.1038/hdy.2014.86.

Soria-Carrasco V, Gompert Z, Comeault AA, Farkas TE, Parchman TL,
Johnston JS, Buerkle CA, Feder JL, Bast J, Schwander T. 2014. Stick
insect genomes reveal natural selection’s role in parallel speciation.
Science 344:738–742.

Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, Bennison
C, Ball AD, Beckerman AP, Slate J. 2010. Adaptation genomics: the
next generation. Trends Ecol Evol. 25:705–712.

Stawski C, Koteja P, Sadowska ET, Jefimow M, Wojciechowski MS. 2015.
Selection for high activity-related aerobic metabolism does not alter
the capacity of non-shivering thermogenesis in bank voles. Comp
Biochem Physiol A Mol Integr Physiol. 180:51–56.

Stern DL, Orgogozo V. 2008. The loci of evolution: how predictable is
genetic evolution? Evolution 62:2155–2177.

Stopkov�a R, Zdr�ahal Z, Ryba.�S, �Sedo O, �Sandera M, Stopka P. 2010.
Novel OBP genes similar to hamster Aphrodisin in the bank vole,
Myodes glareolus. BMC Genomics 11:45.

Storz JF. 2005. INVITED REVIEW: Using genome scans of DNA polymor-
phism to infer adaptive population divergence. Mol Ecol.
14(3):671–688.

Stuglik MT, Babik W, Prokop Z, Radwan J. 2014. Alternative reproductive
tactics and sex-biased gene expression: the study of the bulb mite
transcriptome. Ecol Evol. 4:623–632.

Tan M-KM, Lim H-J, Harper JW. 2011. SCFFBXO22 regulates histone H3
lysine 9 and 36 methylation levels by targeting histone demethylase
KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell
Biol. 31:3687–3699.

Tenaillon O, Rodr�ıguez-Verdugo A, Gaut RL, McDonald P, Bennett AF,
Long AD, Gaut BS. 2012. The molecular diversity of adaptive con-
vergence. Science 335:457–461.
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